INTRODUCTION

ARTIFICIAL
INTELLIGENCE

In which we try to explain why we consider artificial intelligence to be a subject
mostworthy of study, and in which we try to decide what exactly it is, this being a
good thing to decide before embarking.

We call ourselves Homo sapiens—man the wise— because our mental capacities are so im-
portant to us. For thousands of years, we have tried to understand how we think; that is, how
a mere handful of stuff can perceive, understand, predict, arid manipulate a world far larger
and more complicated than itself. The field of artificial intelligence, or A, goes further still:
it attempts not just to understand but also to bufld intelligent entities.

Al is one of the newest sciences. Work started in earnest soon after World War 11, and
the name itself was coined in 1956. Along with molecular biology, Al is regularly cited as
the "'field I would most like to be in" by scientists in other disciplines. A student in physics
might reasonably feel that all the good ideas have already been taken by Galileo, Newton,
Einstein, and the rest. Al on the other hand, still has openings for several full-time Einsteins.

Al currently encompasses a huge variety of subfields, ranging from general-purpose
areas, such as learning and perception to such specific tasks as playing chess, proving math-
ematical theorems, writing poetry, and diagnosing diseases. Al systematizes and automates
intellectual tasks and is therefore potentially relevant to any sphere of human intellectual
activity. In this sense, it is truly a universal field.

1.1 WHAT IS AI?

RATIONALITY

We have claimed that Al is exciting, but we have not said what it 7s. Definitions of artificial
intelligence according to eight textbooks are shown in Figure 1.1. These definitions vary
along two main dimensions. Roughly, the ones on top are concerned with thought processes
and reasoning, whereas the ones on the bottom address #ehavior. The definitions on the left
measure success in terms of fidelity to Awman performance, whereas the ones on the right

measure against an ideal concept of intelligence, which we will call rationality. A system is
rational if it does the "'right thing,” given what it knows.
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TURING TEST

NATURAL LANGUAGE
PROCESSING

Systems that think like humans

Systems that think rationally

"The exciting new effort to make comput-
ers think . .. machines with minds, in the
full and literal sense." (Haugeland, 1985)

"[The automation of] activities that we
associate with human thinking, activities
such as decision-making, problem solv-
ing, learning . ..” (Bellman, 1978)

"The study of mental faculties through the
use of computational models."
(Chamiak and McDermott, 1985)

"The study of the computations that make
it possible to perceive, reason, and act."
(Winston, 1992)

Systems that act like humans

Systems that act rationally

"The art of creating machines that per-
form functions that require intelligence
when performed by people." (Kurzweil,
1990)

"The study of how to make computers do
things at which, at the moment, people are

"Computational Intelligence is the study
of the design of intelligent agents." (Poole
etal., 1998)

“Al ...is concerned with intelligent be-
havior in artifacts." (Nilsson, 1998)

Introduction

better." (Rich and Knight, 1991)

Some definitions of artificial intelligence, organized into four categories.

Figure 1.1

Historically, all four approaches to Al have been followed. As one might expect, a
tension exists between approaches centered around humans and approaches centered around
rationality.! A human-centered approach must be an empirical science, involving hypothesis
and experimental confirmation. A rationalist approach involves a combination of mathemat-
ics and engineering. Each group has both disparaged and helped the other. Let us look at the
four approaches in more detail.

Acting humanly: The Turing Test approach

The Turing Test, proposed by Alan Turing (195()), was designed to provide a satisfactory

operational definition of intelligence. Rather than proposing a long and perhaps controversial
list of qualifications required for intelligence, he suggested a test based on indistinguishability
from undeniably intelligent entities —human beings. The computer passes the test if a human
interrogator, after posing some written questions, cannot tell whether the written responses
come from a person or not. Chapter 26 discusses the details of the test and whether a computer
is really intelligent if it passes. For now, we note that programming a computer to pass the test
provides plenty to work on. The computer would need to possess the following capabilities:

< natural language processing to enable it to communicate successfully in English.

1 'We should point out that, by distinguishing between suman and rational behavior, we are not suggesting that
humans are necessarily "irrational" in the sense of "emotionally unstable" or "insane." One merely need note
that we are not perfect: we are not all chess grandmasters, even those of us who know all the rules of chess; and,
unfortunately, not everyone gets an A on the exam. Some systematic errors in human reasoning are cataloged by
Kahneman ez al. (1982).
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¢ knowledge representation to store what it knows or hears;

{> automated reasoning to use the stored information to answer questions and to draw
new conclusions;

<> machine learning to adapt to new circumstances and to detect and extrapolate patterns.

Turing's test deliberately avoided direct physical interaction between the interrogator and the
computer, because physical simulation of a person is unnecessary for intelligence. However,
the so-called total Turing Test includes a video signal so that the interrogator can test the
subject's perceptual abilities, as well as the opportunity for the interrogator to pass physical
objects "through the hatch." To pass the total Turing Test, the computer will need

{> computer vision to perceive objects, and
¢ roboticsto manipulate objects and move about.

These six disciplines compose most of Al and Turing deserves credit for designing a test
that remains relevant 50 years later. Yet Al researchers have devoted little effort to passing
the Turing test, believing that it is more important to study the underlying principles of in-
telligence than to duplicate an exemplar. The quest for “artificial flight" succeeded when the
Wright brothers and others stopped imitating birds and learmed about acrodynamics. Aero-
nautical engineering texts do not define the goal of their field as making "machines that fly
so exactly like pigeons that they can fool even other pigeons."

Thinking humanly: The cognitive modeling approach

If we are going to say that a given program thinks like a human, we must have some way of
determining how humans think. We need to get inside the actual workings of human minds.
There are two ways to do this: through introspection—trying to catch our own thoughts as
they go by—and through psychological experiments. Once we have a sufficiently precise
theory of the mind, it becomes possible to express the theory as a computer program. If the
program's input/output and timing behaviors match corresponding human behaviors, that is
evidence that some of the program's mechanisms could also be operating in humans. For ex-
ample, Allen Newell and Herbert Simon, who developed GPS, the " General Problem Solver"
(Newell and Simon, 1961), were not content to have their program solve problems correctly.
They were more concerned with comparing the trace of its reasoning steps to traces of human
subjects solving the same problems. The interdisciplinary field of cognitive science brings
together computer models from Al and experimental techniques from psychology to try to
construct precise and testable theories of the workings of the human mind.

Cognitive science is a fascinating field, worthy of an encyclopedia in itself (Wilson
and Keil, 1999). We will not attempt to describe what is known of human cognition in this
book. We will occasionally comment on similarities or differences between Al techniques
and human cognition. Real cognitive science, however, is necessarily based on experimental
investigation of actual humans or animals, and we assume that the reader has access only to
a computer for experimentation.

In the early days of Al there was often confusion between the approaches: an author
would argue that an algorithm performs well on a task and that it is therefore a good model
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LOGIC

LOGICIST

AGENT

RATIONAL AGENT

of human performance, or vice versa. Modern authors separate the two kinds of claims;
this distinction has allowed both AI and cognitive science to develop more rapidly. The two
fields continue to fertilize each other, especially in the areas of vision and natural language.
Vision in particular has recently made advances via an integrated approach that considers
neurophysiological evidence and computational models.

Thinking rationally: The ""laws of thought'' approach

The Greek philosopher Aristotle was one of the first to attempt to codify "right thinking, " that
1s, irrefutable reasoning processes. His syllogisms provided patterns for argument structures
that always yielded correct conclusions when given correct premises —for example, " Socrates
1s a man; all men are mortal; therefore, Socrates is mortal." These laws of thought were
supposed to govern the operation of the mind; their study initiated the field called logic.

Logicians in the 19th century developed a precise notation for statements about all kinds
of things in the world and about the relations among them. (Contrast this with ordinary arith-
metic notation, which provides mainly for equality and inequality statements about numbers.)
By 1965, programs existed that could, in principle, solve any solvable problem described in
logical notation.> The so-called logicist tradition within artificial intelligence hopes to build
on such programs to create intelligent systems.

There are two main obstacles to this approach. First, it 1s not easy to take informal
knowledge and state it in the formal terms required by logical notation, particularly when the
knowledge 1s less than 100% certain. Second, there is a big difference between being able to
solve a problem "in principle" and doing so in practice. Even problems with just a few dozen
facts can exhaust the computational resources of any computer unless it has some guidance
as to which reasoning steps to try first. Although both of these obstacles apply to any attempt
to build computational reasoning systems, they appeared firstin the logicist tradition.

Acting rationally: The rational agent approach

An agent is just something that acts (agent comes from the Latin agere, to do). But computer
agents are expected to have other attributes that distinguish them from mere "programs,"
such as operating under autonomous control, perceiving their environment, persisting over a
prolonged time peniod, adapting to change, and being capable of taking on another's goals. A
rational agentis one that acts so as to achieve the best outcome or, when there is uncertainty,
the best expected outcome.

In the "laws of thought" approach to Al, the emphasis was on correct inferences. Mak-
ing correct inferences is sometimes part of being a rational agent, because one way to act
rationally is to reason logically to the conclusion that a given action will achieve one's goals
and then to act on that conclusion. On the other hand, correct inference is not all of ratio-
nality, because there are often situations where there is no provably correct thing to do, yet
something must still be done. There are also ways of acting rationally that cannot be said to
involve inference. For example, recoiling from a hot stove is a reflex action that is usually
more successful than a slower action taken after careful deliberation.

2 If there is no solution, the program might never stop looking for one.
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All the skills needed for the Turing Test are there to allow rational actions. Thus, we
need the ability to represent knowledge and reason with it because this enables us to reach
good decisions in awide variety of situations. We need 1o be able to generate comprehensible
sentences in natural language because saying those sentences helps us get by in a complex
society. We need learning not just for erudition, but because having a better idea of how the
world works enables us to generate more effective strategies for dealing with it. We need
visual perception not just because seeing is fun, but to get a better idea of what an action
might achieve—for example, being able to see a tasty morsel helps one to move toward it.

For these reasons, the study of Al as rational-agent design has at least two advantages.
First, it is more general than the ""laws of thought ' approach, because correct inference is just
one of several possible mechanisms for achieving rationality. Second, it is more amenable to
scientific development than are approaches based on human behavior or human thought be-
cause the standard of rationality is clearly defined and completely general. Human behavior,
on the other hand, is well-adapted for one specific environment and is the product, in part,
of a complicated and largely unknown evolutionary process that still is far from producing
perfection. This book will therefore concentrate on general principles & rational agents and
on components for constructing them. We will see that despite the apparent simplicity with
which the problem can be stated, an enormous variety of issues come up when we try to solve
it. Chapter 2 outlines some of these issues in more detail.

One important point tokeep in mind: We will see before too long that achieving perfect
rationality — always doing the right thing—is not feasible in complicated environments. The
computational demands are just too high. For most of the book, however, we will adopt the
working hypothesis that perfect rationality is a good starting point for analysis. It simplifies
the problem and provides the appropriate setting for most of the foundational material in
the field. Chapters 6 and 17 deal explicitly with the issue of limited rationality — acting
appropriately when there is not enough time to do all the computations one might like.

1.2 THE FOUNDATIONS OF ARTIFICIAL INTELLIGENCE

In this section, we provide a brief history of the disciplines that contributed ideas, viewpoints,
and techniques to Al. Like any history, this one is forced to (concentrateon a small number
of people, events, and ideas and to ignore others that also were important. We organize the
history around a series of questions. We certainly would not wish to give the impression that

these questions are the only ones the disciplines address or that the disciplines have all been
working toward Al as their ultimate fruition.

Philosophy (428 B.C.—present)

e Can formal rules be used to draw valid conclusions?

e How does the mental mind arise from a physical hrain?
e Where does knowledge come from?

o How does knowledge lead to action?
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Aunistotle (384-322 B.C.) was the first to formulate a precise set of laws governing the ratio-
nal part of the mind. He developed an informal system of syllogisms for proper reasoning,
which in principle allowed one to generate conclusions mechanically, given initial premises.
Much later, Ramon Lull (d. 1315) had the idea that useful reasoning could actually be carried
out by a mechanical artifact. His "concept wheels' are on the cover of this book. Thomas
Hobbes (1588-1679)proposed that reasoning was like numerical computation, that "'we add
and subtract in our silent thoughts." The automation of computation itself was already well
under way; around 1500, Leonardo da Vinci (1452-1519) designed but did not build a me-
chanical calculator; recent reconstructions have shown the design to be functional. The first
known calculating machine was constructed around 1623 by the German scientist Wilhelm
Schickard (1592-1635), although the Pascaline, built in 1642 by Blaise Pascal (1623-1662),
1s more famous. Pascal wrote that "the arithmetical machine produces effects which appear
nearer to thought than all the actions of animals." Gottfried Wilhelm Leibniz (1646—1716)
built a mechanical device intended to carry out operations on concepts rather than numbers,
but its scope was rather limited.

Now that we have the idea of a set of rules that can describe the formal, rational part
of the mind, the next step is to consider the mind as a physical system. René Descartes
(1596-1650) gave the first clear discussion of the distinction between mind and matter and of
the problems that arise. One problem with a purely physical conception of the mind is that it
seems to leave little room for free will: if the mind is governed entirely by physical laws, then
it has no more free will than a rock "deciding" to fall toward the center of the earth. Although
a strong advocate of the power of reasoning, Descartes was also a proponent of dualism. He
held that there 1s a part of the human mind (or soul or spirit) that is outside of nature, exempt
from physical laws. Animals, on the other hand, did not possess this dual quality; they could
be treated as machines. An alternative to dualism is materialism,which holds that the brain's
operation according to the laws of physics constitutes the mind. Free will is simply the way
that the perception of available choices appears to the choice process.

Given a physical mind that manipulates knowledge, the next problem is to establish the
source of knowledge. The empiricism movement, starting with Francis Bacon's (1561-1626)
Novum Orgamum,? is characterized by a dictum of John Locke (1632-1704): "Nothing is in
the understanding, which was not first in the senses.”" David Hume's (1711-1776) A Treatise
o Human Nature (Hume, 1739) proposed what is now known as the principle of induction:
that general rules are acquired by exposure to repeated associations between their elements.
Building on the work of Ludwig Wittgenstein (1889-1951) and Bertrand Russell (1872~
1970), the famous Vienna Circle, led by Rudolf Carnap (1891-1970). developed the doctrine
of logical positivism. This doctrine holds that all knowledge can be characterized by logical
theories connected, ultimately, to observation sentences that correspond to sensory inputs.*
The confirmation theory of Camnap and Carl Hempel (1905-1997) attempted to understand
how knowledge can be acquired from experience. Carnap’s book The Logical Structure of

3 An update of Aristotle's Organon, or instrument of thought.

+ In this picture, all meaningful statements can be verified or falsified either by analyzing the meaning of the
words or by carrying out experiments. Because this rules out most of metaphysics, as was the intention, logical
positivism was unpopular in some circles.
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the World (1928) defined an explicit computational procedure for extracting knowledge from
elementary experiences. It was probably the first theory of mind as a computational process.

The final element in the philosophical picture of the mind is the connection between
knowledge and action. This question is vital to Al because intelligence requires action as well
as reasoning. Moreover, only by understanding how actions are justified can we understand
how to build an agent whose actions are justifiable (or rational). Aristotle argued that actions
are justified by a logical connection between goals and knowledge of the action's outcome
(the last part of this extract also appears on the front cover of this book):

But how does it happen that thinking is sometimes accompaniedby action and sometimes

not, sometimes by motion, and sometimes not? It looks as if almost the same thing

happens as in the case of reasoning and making inferences about unchangingobjects. But

in that case the end is a speculative proposition . . . whereas here the conclusion which

results from the two premisesis an action. ... I need covering; a cloak is a covering. I

need a cloak. What I need, I have to make; I need a cloak. I have to make a cloak. And
the conclusion, the "I have to make a cloak! 1is an action. (Nussbaum, 1978, p. 40)

In the Nicomachean Ethics (Book 1II. 3, 1112b), Arnistotle further elaborates on this topic,
suggesting an algorithm:
We deliberate not about ends, but about means. For a doctor does not deliberate whether
he shall heal, nor an orator whether he shall persuade, ... They assume the end and
consider how and by what means it is attained, and if it seems easily and best produced
thereby; while if it 1s achieved by one means only they consider how it will be achieved
by this and by what means this will be achieved, till they come to the first cause, . .. and
what 1s last in the order of analysis seems to be first in the order of becoming. And if we
come on an impossibility, we give up the search, e.g. if we need money and this cannot
be got; but if a thing appears possible we try to do it.

Aristotle's algorithm was implemented 2300 years later by Newell and Simon in their GPS
program. We would now call it a regression planning system. (See Chapter 11.)

Goal-based analysis is useful, but does not say what to do when several actions will
achieve the goal, or when no action will achieve it completely. Antoine Arnauld (1612-1694)
correctly described a quantitative formula for deciding what action to take in cases like this
(see Chapter 16). John Stuart Mill's (1806—1873) book Utilitarianism (Mill, 1863) promoted
the idea of rational decision criteria in all spheres of human activity. The more formal theory
of decisions is discussed in the following section.

Mathematics (c. 800—present)

¢ What are the formal rules to draw valid conclusions?
e What can be computed?
¢ How do we reason with uncertain information?
Philosophers staked out most of the important ideas of Al but the leap to a formal science re-

quired a level of mathematical formalization in three fundamental areas: logic, computation,
and probability.

The 1dea of formal logic can be traced back to the philosophers of ancient Greece (see
Chapter 7), but its mathematical development really began with the work of George Boole



Chapter 1. Introduction

ALGORITHM

INCOMPLETENESS
THEOREM

INTRACTABILITY

(1815-1864), who worked out the details of propositional, or Boolean, logic (Boole, 1847).
In 1879, Gottlob Frege (1848-1925) extended Boole's logic to include objects and relations,
creating the first-order logic that is used today as the most basic knowledge representation
system.”  Alfred Tarski (1902-1983) introduced a theory of reference that shows how to
relate the objects in a logic to objects in the real world. The next step was to determine the
limits of what could be done with logic and computation.

The first nontrivial algorithmis thought to be Euclid’s algorithm for computing great-
est common denominators. The study of algorithms as objects in themselves goes back to
al-Khowarazmi, a Persian mathematician of the 9th century, whose writings also introduced
Arabic numerals and algebra to Europe. Boole and others discussed algorithms for logical
deduction, and, by the late 19th century, efforts were under way to formalize general math-
ematical reasoning as logical deduction. In 1900, David Hilbert (1862-1943) presented a
list of 23 problems that he correctly predicted would occupy mathematicians for the bulk of
the century. The final problem asks whether there is an algorithm for deciding the truth of
any logical proposition involving the natural numbers —the famous Entscheidungsproblem,
or decision problem. Essentially, Hilbert was asking whether there were fundamental limits
to the power of effective proof procedures. In 1930, Kurt Godel (1906-1978) showed that
there exists an effective procedure to prove any true statement in the first-order logic of Frege
and Russell, but that first-order logic could not capture the principle of mathematical induc-
tion needed to characterize the natural numbers. In 1931, he showed that real limits do exist.
His incompleteness theoremshowed that in any language expressive enough to describe the
properties of the natural numbers, there are true statements that are undecidable in the sense
that their truth cannot be established by any algorithm.

This fundamental result can also be interpreted as showing that there are some functions
on the integers that cannot be represented by an algorithm —thatis, they cannot be computed.
This motivated Alan Turing (1912-1954)to try to characterize exactly which functions are
capable of being computed. This notion is actually slightly problematic, because the notion
of a computation or effective procedure really cannot be given a formal definition. However,
the Church—Turing thesis, which states that the Turing machine (Turing, 1936) is capable of
computing any computable function, is generally accepted as providing a sufficient defimtion.
Turing also showed that there were some functions that no Turing machine can compute. For
example, no machine can tell in general whether a given program will return an answer on a
given input or run forever.

Although undecidability and noncomputability are important to an understanding of
computation, the notion of intractability has had a much greater impact. Roughly speak-
ing, a problem is called intractable if the time required to solve instances of the problem
grows exponentially with the size of the instances. The distinction between polynomial and
exponential growth in complexity was firstemphasized in the mid-1960s (Cobham, 1964; Ed-
monds, 1965). It is important because exponential growth means that even moderately large
instances cannot be solved in any reasonable time. Therefore, one should strive to divide

5 Frege's proposed notation for first-orderlogic never became popular, for reasons that are apparent immediately
from the example on the front cover.
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the overall problem of generating intelligent behavior into tractable subproblems rather than
intractable ones.

How can one recognize an intractable problem? The theory of NP-completeness, pio-
neered by Steven Cook (1971) and Richard Karp (1972), provides a method. Cook and Karp
showed the existence of large classes of canonical corabinatorial search and reasoning prob-
lems that are NP-complete. Any problem class to which the: class of NP-complete problems
can be reduced is likely to be intractable. (Although it has not been proved that NP-complete
problems are necessarily intractable, most theoreticians believe it.) These results contrast
with the optimism with which the popular press greeted the first computers — "Electronic
Super-Brains" that were "Faster than Einstein!" Despite the increasing speed of computers,
careful use of resources will characterize intelligent systems. Put crudely, the world is an
extremelylarge problem instance! In recent years, Al has helped explain why some instances
of NP-complete problems are hard, yet others are easy (Cheeseman ef al., 1991).

Besides logic and computation, the third great contribution of mathematics to Al is
the theory of probability. The Italian Gerolamo Cardano (1501-1576) first framed the idea
of probability, describing it in terms of the possible outcomes of gambling events. Prob-
ability quickly became an invaluable part of all the quantitative sciences, helping to deal
with uncertain measurements and incomplete theories. Pierre Fermat (1601-1665), Blaise
Pascal (1623-1662), James Bernoulli (1654-1705), Fierre Laplace (1749-1827), and oth-
ers advanced the theory and introduced new statistical methods. Thomas Bayes (1702-1761)
proposed a rule for updating probabilities in the light of new evidence. Bayes' rule and the re-
sulting field called Bayesian analysis form the basis of most modern approaches to uncertain
reasoning in Al systems.

Economics (1776—present)

e How should we make decisions so as to maximize payoft?
e How should we do this when others may not go along?
a How should we do this when the payoff may be far in the future?

The science of economics got its start in 1776, when Scottish philosopher Adam Smith
(1723-1790) published An Inquiry into the Nature and Causes of the Wealth of Nations.
While the ancient Greeks and others had made contributions to economic thought, Smith was
the first to treat it as a science, using the idea that economies can be thought of as consist-
ing of individual agents maximizing their own economic well-being. Most people think of
economics as being about money, but economists will say that they are really studying how
people make choices that lead to preferred outcomes. The mathematical treatment of "pre-
ferred outcomes” or utility was first formalized by Léon Walras (pronounced "Valrasse")
(1834-1910) and was improved by Frank Ramsey (1931) and later by John von Neumann and
Oskar Morgenstern in their book 7he Theory of Games and Economic Behavior (1944).
Decision theory, which combines probability theory with utility theory, provides a for-
mal and complete framework for decisions (economic or otherwise) made under uncertainty—
that 1s, in cases where probabilistic descriptions appropriately capture the decision-maker's
environment. This is suitable for "large" economies where each agent need pay no attention
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to the actions of other agents as individuals. For "small" economies, the situation is much
more like a game: the actions of one player can significantly affect the utility of another
(either positively or negatively). Von Neumann and Morgenstern's development of game
theory (see also Luce and Raiffa, 1957) included the surprising result that, for some games,
a rational agent should act in a random fashion, or at least in a way that appears random to
the adversaries.

For the most part, economists did not address the third question listed above, namely,
how to make rational decisions when payoffs from actions are not immediate but instead re-
sult from several actions taken in sequence. This topic was pursued in the field of operations
research, which emerged in World War II from efforts in Britain to optimize radar installa-
tions, and later found civilian applications in complex management decisions. The work of
Richard Bellman (1957) formalized a class of sequential decision problems called Markov
decision processes, which we study in Chapters 17 and 21.

Work in economics and operations research has contributed much to our notion of ra-
tional agents, yet for many years Al research developed along entirely separate paths. One
reason was the apparent complexity of making rational decisions. Herbert Simon (1916~
2001), the pioneering Al researcher, won the Nobel prize in economics in 1978 for his early
work showing that models based on satisficing—making decisions that are "good enough,"
rather than laboriously calculating an optimal decision—gave a better description of actual
human behavior (Simon, 1947). In the 1990s, there has been a resurgence of interest in
decision-theoretic techniques for agent systems (Wellman, 1995).

Neuroscience (1861-present)

e How do brains process information?

Neuroscience is the study of the nervous system, particularly the brain. The exact way in
which the brain enables thought is one of the great mysteries of science. It has been appre-
ciated for thousands of years that the brain is somehow involved in thought, because of the
evidence that strong blows to the head can lead to mental incapacitation. It has also long been
known that human brains are somehow different; in about 335 B.C. Aristotle wrote, "Of all
the animals, man has the largest brain in proportion to his size." 6 Still, it was not until the
middle of the 18th century that the brain was widely recognized as the seat of consciousness.
Before then, candidate locations included the heart, the spleen, and the pineal gland.

Paul Broca's (1824—1880) study of aphasia (speech deficit) in brain-damaged patients
in 1861 reinvigorated the field and persuaded the medical establishment of the existence of
localized areas of the brain responsible for specific cognitive functions. In particular, he
showed that speech production was localized to a portion of the left hemisphere now called
Broca's area.” By that time, it was known that the brain consisted of nerve cells or neurons,
but it was not until 1873 that Camiilo Golgi (1843-1926) developed a staining technique
allowing the observation of individual neurons in the brain (see Figure 1.2). This technique

6 Since then, it has been discovered that some species of dolphins and whales have relatively larger brains. The
large size of human brains is now thought to be enabled in part by recent improvements in its cooling system.
7 Many cite Alexander Hood (1824) as a possible prior source.
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Figure 1.2  The parts of a nerve cell or neuron. Each ncuron consists of a cell body,
or soma, that contains a cell nucleus. Branching out from the cell body are a number of
fibers called dendrites and a single long fiber called the axon. The axon stretches out for
a long distance, much longer than the scale in this diagram indicates. Typically they are 1
cm long (100 times the diameter of the cell body), but can reach up to 1 meter. A neuron
makes connections with 10 to 100,000 other neurons at junctions called synapses. Signals are
propagated from neuron to neuron by a complicated electrochemical reaction. The signals
control brain activity in the short term, and also enable long-term changes in the position
and connectivity of neurons. These mechanisms are thought to form the basis for learning
in the brain. Most information processing goes on in sthe cerebral cortex, the outer layer of
the brain. The basic organizational unit appears to be a column of tissue about 0.5 mum in
diameter, extending the full depth of the cortex, which is about 4 mm in humans. A column
contains about 20,000 neurons.

was used by Santiago Ramon y Cajal (1852-1934) in his pioneering studies of the brain's
neuronal structures.'

We now have some data on the mapping betwecen areas of the brain and the parts of the
body that they control or from which they receive sensory input. Such mappings are able to
change radically over the course of a few weeks, and some animals seem to have multiple
maps. Moreover, we do not fully understand how other areas can take over functions when
one areais damaged. There is almost no theory on how an individual memory is stored.

The measurement of intact brain activity began in 1929 with the invention by Hans
Berger of the electroencephalograph (EEG). The recent development of functional magnetic
resonance imaging (fMRI) (Ogawa ef «l., 1990) is giving neuroscientists unprecedentedly
detailed images of brain activity, enabling measurements that correspond in interesting ways
to ongoing cognitive processes. These are augmented by advances in single-cell recording of

8 Golgi persisted in his belief that the brains functions were carried out primarily in a continuous medium in

which neurons were embedded, whereas Cajal propounded the "neuronal doctrine.” The two shared the Nobel
prizein 1906 but gave rather antagonistic acceptance speeches.
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Computer I Human Brain
Computational units 1 CPU, 10® gates 10 neurons
Storage units 10 bits RAM 10" neurons
101 bits disk 10 synapses
Cycle time 1079 sec 1073 sec
Bandwidth 1010 bits/sec 10 bits/sec
Memory updates/sec L 102 10
Figure1.3 A crude comparisonof the raw computationalresources available to computers
(circa 2003) and brains. The computer's numbers have all increased by at least a factor of 10
since the first edition of this book, and are expected to do so again this decade. The brain's
numbers have not changed in the last 10,000 years.

neuron activity. Despite these advances, we are still a long way from understanding how any
of these cognitive processes actually work.

ﬁﬁ’x;-» The truly amazing conclusion is that a collection of simple cells can lead to thought,
= action, and consciousness or, in other words, that brains cause minds (Searle, 1992). The

only real alternative theory is mysticism: that there is some mystical realm in which minds
operate that is beyond physical science.

Brains and digital computers perform quite different tasks and have different properties.
Figure 1.3 shows that there are 1000 times more neurons in the typical human brain than there
are gates in the CPU of a typical high-end computer. Moore's Law® predicts that the CPU’s
gate count will equal the brain's neuron count around 2020. Of course, little can be inferred
from such predictions; moreover, the difference in storage capacity is minor compared to the
difference in switching speed and in parallelism. Computer chips can execute an instruction
in a nanosecond, whereas neurons are millions of times slower. Brains more than make up
for this, however, because all the neurons and synapses are active simultaneously, whereas
most current computers have only one or at most a few CPUs. Thus, even though a computer
is a million times faster in raw swilching speed, the brain ends up being 100,000 times faster
at what it does.

Psychology (1879-present)

e How do humans and animals think and act?

The origins of scientific psychology are usually traced to the work of the German physi-
cist Hermann von Helmholtz (1821-1894) and his student Wilhelm Wundt (1832-1920).
Helmholtz applied the scientific method to the study of human vision, and his Handbook
of Physiological Optics is even now described as "the single most important treatise on the
physics and physiology of human vision" (Nalwa, 1993, p.15). In 1879, Wundt opened the
first laboratory of experimental psychology at the University of Leipzig. Wundt insisted on
carefully controlled experiments in which his workers would perform a perceptual or associa-

9 Moore's Law says that the number of transistors per square inch doubles every 1 to 1.5 years. Human brain
capacity doubles roughly every 2 to 4 million years.
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tive task while introspecting on their thought processes. The careful controls went a long way
toward making psychology a science, but the subjective nature of the data made it unlikely
that an experimenter would ever disconfirm his or her own theories. Biologists studying
animal behavior, on the other hand, lacked introspective data and developed an objective
methodology, as described by H. S. Jennings (1906) in his influential work Behavior of the
Lower Organisms. Applying this viewpoint to humans, the behaviorism movement, led by
John Watson (1878-1958), rejected any theory involving mental processes on the grounds
that introspection could not provide reliable evidence. Behaviorists insisted on studying only
objective measures of the percepts (or stimulus) given to an animal and its resulting actions
(or response). Mental constructs such as knowledge, beliefs, goals, and reasoning steps were
dismissed as unscientific "'folk psychology." Behaviorism discovered a lot about rats and pi-
geons, but had less success at understanding humans. Nevertheless, it exerted a strong hold
on psychology (especially in the United States) from about 1920 to 1960.

The view of the brain as an information-processing device, which is a principal charac-
teristic of cognitive psychology,can be traced back at least to the works of William James!©
(1842-1910). Helmholtz also insisted that perception involved a form of unconscious log-
ical inference. The cognitive viewpoint was largely eclipsed by behaviorism in the United
States, but at Cambridge's Applied Psychology Unit, directed by Frederic Bartlett (1886
1969). cognitive modeling was able to flourish. The Nature of Explanation, by Bartlett's
student and successor Kenneth Craik (1943), forcefully reestablished the legitimacy of such
"mental" terms as beliefs and goals, arguing that they are just as scientific as, say, using
pressure and temperature to talk about gases, despite their being made of molecules that have
neither. Craik specified the three key steps of a knowledge-based agent: (1) the stimulus must
be translated into an internal representation, (2) the representation is manipulated by cogni-
tive processes to derive new internal representations, and (3) these are in turn retranslated
back into action. He clearly explained why this was a good design for an agent:

If the organism carries a "small-scale model" of external reality and of its own possible
actions within its head, it is able to try out variousalternatives, conclude which is the best
of them, react to future situations before they arise, utilize the knowledge of past events
in dealing with the present and future, and in every way to react in a much fuller, safer,
and more competent manner to the emergencies which face it. (Craik, 1943)

After Craik's death in a bicycle accident in 1945, his work was continued by Don-
ald Broadbent, whose book Perception and Communication (1958) included some of the
first information-processing models of psychological phenomena. Meanwhile, in the United
States, the development of computer modeling led to the creation of the field of cognitive
science. The field can be said to have started at a workshop in September 1956 at MIT. (We
shall see that this is just two months after the conference at which Al itself was "born.") At
the workshop, George Miller presented 7he Magic Number Seven, Noam Chomsky presented
Three Models of Language, and Allen Newell and Herbert Simon presented 7he Logic The-
ory Machine. These three influential papers showed how coniputer models could be used to

10 William James was the brother of novelist Henry James. It is said that Henry wrote fiction as if it were
psychology and William wrote psychology as if it were fiction.
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address the psychology of memory, language, and logical thinlung, respectively. It is now a
common view among psychologists that "a cognitive theory should be like a computer pro-
gram" (Anderson, 1980), that is, it should describe a detailed information-processing mecha-
nism whereby some cognitive function might be implemented.

Computer engineering (1940—-present)
e How can we build an efficient computer?

For artificial intelligence to succeed, we need two things: intelligence and an artifact. The
computer has been the artifact of choice. The modern digital electronic computer was in-
vented independently and almost simultaneously by scientists in three countries embattled in
World War 11. The first operational computer was the electromechanical Heath Robinson,'!
builtin 1940 by Alan Turing's team for a single purpose: deciphering German messages. In
1943, the same group developed the Colossus, a powerful general-purpose machine based
on vacuum tubes.'? The first operational programmable computer was the Z-3, the inven-
tion of Konrad Zuse in Germany in 1941. Zuse also invented floating-point numbers and the
first high-level programming language, Plankalkiil. The first electronic computer, the ABC,
was assembled by John Atanasoff and his student Clifford Berry between 1940 and 1942
at Iowa State University. Atanasoff's research received little support or recognition; it was
the ENIAC, developed as part of a secret military project at the University of Pennsylvania
by a team including John Mauchly and John Eckert, that proved to be the most influential
forerunner of modern computers.

In the half-century since then, each generation of computer hardware has brought an
increase in speed and capacity and a decrease in price. Performance doubles every 18 months
or so, with a decade or two to go at this rate of increase. After that, we will need molecular
engineering or some other new technology.

Of course, there were calculating devices before the electronic computer. The earliest
automated machines, dating from the 17th century, were discussed on page 6. The first pro-
grammable machine was aloom devised in 1805 by Joseph Marie Jacquard (1752-1834) that
used punched cards to store instructions for the pattern to be woven. In the mid-19th century,
Charles Babbage (1792—1871) designed two machines, neither of which he completed. The
"Difference Engine," which appears on the cover of this book, was intended to compute math-
ematical tables for engineering and scientific projects. It was finally built and shown to work
in 1991 at the Science Museum in London (Swade, 1993). Babbage's " Analytical Engine"
was far more ambitious: it included addressable memory, stored programs, and conditional
jumps and was the first artifact capable of universal computation. Babbage's colleague Ada
Lovelace, daughter of the poet Lord Byron, was perhaps the world's first programmer. (The
programming language Ada is named after her.) She wrote programs for the unfinished Ana-
lytical Engine and even speculated that the machine could play chess or compose music.

11 Heath Robinson was a cartoonist famous for his depictions of whimsical and absurdly complicated contrap-
tions for everyday tasks such as buttering toast.

12 In the postwar period, Turing wanted to use these computers for Al research— for example, one of the first
chess programs (Turing ez al., 1953). His efforts were blocked by the British government.
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Al also owes a debt to the software side of computer science, which has supplied the
operating systems, programming languages, and tools needed to write modern programs (and
papers about them). But this is one area where the debt has been repaid: work in Al has pio-
neered many ideas that have made their way back to mainstream computer science, including
time sharing, interactive interpreters, personal computers with windows and mice, rapid de-
velopment environments, the linked list data type, automatic storage management, and key
concepts of symbolic, functional, dynamic, and object-oriented programming.

Control theory and Cybernetics (1948—present)
e How can artifacts operate under their own control?

Kitesibios of Alexandria (c. 250 B.C.) built the first self-controlling machine: a water clock
with a regulator that kept the flow of water running through it at a constant, predictable pace.
This invention changed the definition of what an artifact could do. Previously, only living
things could modify their behaviorin response to changes in the environment. Other examples
of self-regulating feedback control systems include the steam engine governor, created by
James Watt (1736-1819), and the thermostat, invented by Cornelis Drebbel (1572-1633),
who also invented the submarine. The mathematical theory of stable feedback systems was
developed in the 19th century.

CONTROL THEORY The central figure in the creation of what is now called control theory was Norbert
Wiener (1894-1964). Wiener was a brilliant mathematician who worked with Bertrand Rus-
sell, among others, before developing an interest in biological and mechanical control systems
and their connection to cognition. Like Craik (who also used control systems as psycholog-
ical models), Wiener and his colleagues Arturo Rosenblueth and Julian Bigelow challenged
the behaviorist orthodoxy (Rosenblueth ez al., 1943). They viewed purposive behavior as
arising from a regulatory mechanism trying to minimize "error" —the difference between
current state and goal state. In the late 1940s, Wiener, along with Warren McCulloch, Walter
Pitts, and John von Neumann, organized a series of conferences that explored the neww mathe-
matical and computational models of cognition and influenced many other researchers in the

CYBERNETICS behavioral sciences. Wiener's book Cybernetics (1948) became a bestseller and avvoke the
public to the possibility of artificially intelligent machines.

Modern control theory, especially the branch known as stochastic optimal control, has

OB as its goal the design of systems that maximize an objective functionover time. This roughly
atches our view of AH designing systems that behave optimally. Why, then, are Al and con-
trol theory two different fields, especially given the close connections among their founders?
The answer lies in the close coupling between the mathematical techniques that were familiar
to the participants and the corresponding sets of problems that were encompassed in each
world view. Calculus and matrix algebra, the tools of control theory, lend themselves to sys-
tems that are describable by fixedsets of continuous variables; furthermore, exact analysis is
typically feasible only for linear systems. AT was founded in part as a way to escape from the
limitations of the mathematics of control theory in the 1950s. The tools of logical inference
and computation allowed Al researchers to consider some problems such as language, vision,
and planning, that fell completely outside the control theorist's purview.
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Linguistics (1957—present)
e How does language relate to thought?

In 1957, B. E Skinner published Verbal Behavior. This was a comprehensive, detailed ac-
count of the behaviorist approach to language learning, written by the foremost expert in the
field. But curiously, a review of the book became as well known as the book itself, and served
to almost kill off interest in behaviorism. The author of the review was Noam Chomsky, who
had just published a book on his own theory, Syntactic Structures. Chomsky showed how
the behaviorist theory did not address the notion of creativity in language —it did not explain
how a child could understand and make up sentences that he or she had never heard before.
Chomsky’s theory —based on syntactic models going back to the Indian linguist Panini (c.
350 B.C.)—could explain this, and unlike previous theories, it was formal enough that it
could in principle be programmed.
Modem linguistics and Al then, were "bom" at about the same time, and grew up
COMPLTATIONAL together, intersecting in a hybrid field called computational linguistics or natural language
processing. The problem of understanding language soon turned out to be considerably more
complex than it seemed in 1957. Understanding language requires an understanding of the
subject matter and context, not just an understanding of the structure of sentences. This might
seem obvious, but it was not widely appreciated until the 1960s. Much of the early work in
knowledge representation (the study of how to put knowledge into a form that a computer
can reason with) was tied to language and informed by research in Linguistics, which was
connected in turn to decades of work on the philosophical analysis of language.

1.3 THE HISTORY OF ARTIFICIAL INTELLIGENCE

With the background material behind us, we are ready to cover the development of Al itself.

The gestation of artificial intelligence (1943-1955)

The first work that 1s now generally recognized as Al was done by Warren McCulloch and
Walter Pitts (1943). They drew on three sources: knowledge of the basic physiology and
function of neurons in the brain; a formal analysis of propositional logic due to Russell and
Whitehead; and Turing's theory of computation. They proposed a model of artificial neurons
in which each neuron is characterized as being "on" or "off," with a switch to "on" occurring
in response to stimulation by a sufficient number of neighboring neurons. The state of a
neuron was conceived of as 'factually equivalent to a proposition which proposed its adequate
stimulus." They showed, for example, that any computable function could be computed by
some network of connected neurons, and that all the logical connectives (and, or, not, etc.)
could be implemented by simple net structures. McCulloch and Pitts also suggested that
suitably defined networks could learn. Donald Hebb (1949) demonstrated a simple updating
rule for modifying the connection strengths between neurons. His rule, now called Hebbian
learning,remains an influential model to this day.
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Two undergraduate students at Harvard, Marvin Minsky and Dean Edmonds, built the
first neural network computer in 1950. The SNARC, as it was called, used 3000 vacuum
tubes and a surplus automatic pilot mechanism from a B-24 bomber to simulate a network of
40 neurons. Later, at Princeton, Minsky studied universal computation in neural networks.
His Ph.D. committee was skeptical about whether this kind of work should be considered
mathematics, but von Neumann reportedly said, "If it isn't now, it will be someday." Minsky
was later to prove influential theorems showing the limitations of neural network research.

There were a number of early examples of work that can be characterized as Al but it
was Alan Turing who first articulated a complete vision of Al in his 1950 article " Comput-
ing Machinery and Intelligence." Therein, he introduced the Turing test, machine learning,
genetic algorithms, and reinforcement learning.

The birth of artificial intelligence (1956)

Princeton was home to another influential figure in Al, John McCarthy. After graduation,
McCarthy moved to Dartmouth College, which was to become the official birthplace of the
field. McCarthy convinced Minsky, Claude Shannon, and Nathaniel Rochester to help him
bring together U.S. researchers interested in automata theory, neural nets, and the study of
intelligence. They organized a two-month workshop at Dartmouth in the summer of 1956.
There were 10 attendees in all, including Trenchard More from Princeton, Arthur Samuel
from IBM, and Ray Solomonoff and Oliver Selfridge from MIT.

Two researchers from Carnegie Tech,!? Allen Newell and Herbert Simon, rather stole
the show. Although the others had ideas and in some cases programs for particular appli-
cations such as checkers, Newell and Simon already had a reasoning program, the Logic
Theorist (LT), about which Simon claimed, "We have invented a computer program capable
of thinking non-numerically, and thereby solved the venerable mind—body problem.”'* Soon
after the workshop, the program was able to prove most of the theorems in Chapter 2 of Rus-
sell and Whitehead's Principia Mathematica. Russell was reportedly delighted when Simon
showed him that the program had come up with a proof for one theorem that was shorter than
the one in Principia. The editors of the Journal d Symbolic Logic were less impressed; they
rejected a paper coauthored by Newell, Simon, and Logic Theorst.

The Dartmouth workshop did not lead to any new breakthroughs, but it did introduce
all the major figures to each other. For the next 20 years, the field would be dominated by
these people and their students and colleagues at MIT, CMU, Stanford, and IBM. Perhaps
the longest-lasting thing to come out of the workshop was an agreement to adopt McCarthy’s
new name for the field: artificial intelligence. Perhaps "computational rationality" would
have been better, but " AI" has stuck.

Looking at the proposal for the Dartmouth workshop (McCarthy et al., 1955), we can
see why it was necessary for Al to become a separate field. Why couldn't all the work done

13 Now Carnegie Mellon University (CMU).

14 Newell and Simon also invented a list-processing language, IPL, to write LT. They had no compiler, and
translated it into machine code by hand. To avoid errors, they worked in parallel, calling out binary numbers to
each other as they wrote each instruction to make sure they agreed.
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in Al have taken place under the name of control theory, or operations research, or decision
theory, which, after all, have objectives similar to those of AI? Or why isn't Al a branch
of mathematics? The first answer is that AI from the start embraced the idea of duplicating
human faculties like creativity, self-improvement, and language use. None of the other fields
were addressing theseissues. The second answer is methodology. Alis the only one of these
fields that is clearly a branch of computer science (although operations research does share
an emphasis on computer simulations), and Al is the only field to attempt to build machines
that will function autonomously in complex, changing environments.

Early enthusiasm, great expectations (1952-1969)

The early years of Al were full of successes —in a limited way. Given the primitive computers
and programming tools of the time, and the fact that only a few years earlier computers
were seen as things that could do arithmctic and no more, it was astonishing whenever a
computer did anything remotely clever. The intellectual establishment, by and large, preferred
to believe that "a machine can never do X." (See Chapter 26 for a long list of X's gathered
by Turing.) Al researchers naturally responded by demonstrating one X after another. John
McCarthy referred to this period as the "Look, Ma, no hands!" era.

Newell and Simon's early success was followed up with the General Problem Solver,
or GPS. Unlike Logic Theorist, this program was designed from the start to imitate human
problem-solving protocols. Within the limited class of puzzles it could handle, it turned out
that the order in which the program considered subgoals and possible actions was similar to
that in which humans approached the same problems. Thus, GPS was probably the first pro-
gram to embody the "thinking humanly" approach. The success of GPS and subsequent pro-
grams as models of cognition led Newell and Simon (1976) to formulate the famous physical
symbol system hypothesis, which states that "a physical symbol system has the necessary and
sufficient means for general intelligent action." What they meant is that any system (human
or machine) exhibiting intelligence must operate by manipulating data structures composed
of symbols. We will see later that this hypothesis has been challenged from many directions.

At IBM, Nathaniel Rochester and his colleagues produced some of the first Al pro-
grams. Herbert Gelemter (1959) constructed the Geometry Theorem Prover, which was
able to prove theorems that many students of mathematics would find quite tricky. Starting
in 1952, Arthur Samuel wrote a series of programs for checkers (draughts) that eventually
learned to play at a strong amateur level. Along the way, he disproved the idea that comput-
ers can do only what they are told to: his program quickly learned to play a better game than
its creator. The program was demonstrated on television in February 1956, creating a very
strong impression. Like Turing, Samuel had trouble finding computer time. Working at night,
he used machines that were still on the testing floor at IBM’s manufacturing plant. Chapter 6
covers game playing, and Chapter 21 describes and expands on the learning techniques used
by Samuel.

John McCarthy moved from Dartmouth to MIT and there made three crucial contribu-
tions in one historic year: 1958. InMIT AT Lab Memo No. 1, McCarthy defined the high-level
language Lisp, which was to become the dominant Al programming language. Lispis the
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second-oldest major high-level language in current use, one year younger than FORTRAN.
With Lisp, McCarthy had the tool he needed, but access to scarce and expensive computing
resources was also a serious problem. In response, he and others at MIT invented time shar-
ing. Also in 1958, McCarthy published a paper entitled Programs with Common Sense, in
which he described the Advice Taker, a hypothetical program that can be seen as the first
complete Al system. Like the Logic Theorist and Geometry Theorem Prover, McCarthy’s
program was designed to use knowledge to search for solutions to problems. But unlike the
others, it was to embody general knowledge of the world. For example, he showed how some
simple axioms would enable the program to generate a plan to drive to the airport to catch
a plane. The program was also designed so that it could accept new axioms in the normal
course of operation, thereby allowing it to achieve competence in new areas without being
reprogrammed. The Advice Taker thus embodied the central principles of knowledge repre-
sentation and reasoning: that it is useful to have a formal, explicit representation of the world
and of the way an agent's actions affect the world and to be able to manipulate these repre-
sentations with deductive processes. It is remarkable how much of the 1958 paper remains
relevant even today.

1958 also marked the year that Marvin Minsky moved to MIT. His initial collabora-
tion with McCarthy did not last, however. McCarthy stressed representation and reasoning
in formal logic, whereas Minsky was more interested in getting programs to work and even-
tually developed an anti-logical outlook. In 1963, McCarthy started the Al lab at Stanford.
His plan to use logic to build the ultimate Advice Taker was advanced by J. A. Robinson's
discovery of the resolution method (a complete theorem-proving algorithm for first-order
logic; see Chapter 9). Work at Stanford emphasized general-purpose methods for logical
reasoning. Applications of logic included Cordell Green's question-answering and planning
systems (Green, 1969b) and the Shakey robotics project at the new Stanford Research Insti-
tute (SRI). The latter project, discussed further in Chapter 25, was the first to demonstrate the
complete integration of logical reasoning and physical activity.

Minsky supervised a series of students who chose limited problems that appeared to
require intelligence to solve. These limited domains became known as microworlds. James
Slagle's SAINT program (1963a) was able to solve closed-form calculus integration problems
typical of first-year college courses. Tom Evans's ANALOGY program (1968) solved geomet-
ric analogy problems that appear in IQ tests, such as the one in Figure 1.4. Daniel Bobrow’s
STUDENT program (1967) solved algebra story problems, such as the following:

If the number of customers Tom gets is twice the square of 20 percent of the number
o advertissments he runs, and the number of advertisements he runs is 45, what is the
number of customers Tom gets?

The most famous microvvorld was the blocks world, which consists of a set of solid blocks
placed on a tabletop (or more often, a simulation of a tabletop), as shown in Figure 1.5.
A typical task in this world is to rearrange the blocks in a certain way, using a robot hand
that can pick up one block at a time. The blocks world was home to the vision project of
David Huffman (1971), the vision and constraint-propagation work of David Waltz (1973),
the learning theory of Patrick Winston (1970), the natural language understanding program
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Figure 1.4  An example problem solved by Evans's ANALOGY program.

Figurel.S5 A scene from the blocks world. SHRDLU (Winograd, 1972) has just completed
the command, "Find a block whichis taller than the one you are holding and put it in the box."

of Terry Winograd (1972), and the planner of Scott Fahlman (1974).

Early work building on the neural networks of McCulloch and Pitts also flourished.
The work of Winograd and Cowan (1963) showed how a large number of elements could
collectively represent an individual concept, with a corresponding increase in robustness and
parallelism. Hebb's learning methods were enhanced by Bernie Widrow (Widrow and Hoff,
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1960; Widrow, 1962), who called his networks adalines, and by Frank Rosenblatt (1962)
with his perceptrons. Rosenblatt proved the perceptron convergence theorem, showing
that his learning algorithm could adjust the connection strengths of a perceptron to match any
input data, provided such a match existed. These topics are covered in Chapter 20.

A dose of reality (1966-1973)

From the beginning, Al researchers were not shy about making predictions of their coming
successes. The following statement by Herbert Simon in 1957 is often quoted:

It is not my aim to surprise or shock you—but the simplest way 1 can summarize is to say
that there are now in the world machines that think, that learn and that create. Moreover,
their ability to do these things is going to increase rapidly until—in a visible future —the
range of problems they can handle will be coextensive with the range to which the human
mind has been applied.

Terms such as "visible future" can be interpreted in various ways, but Simon also made a
more concrete prediction: that within 10 years a computer would be chess champion, and a
significant mathematical theorem would be proved by machine. These predictions came true
(or approximately true) within 40 years rather than 10. Simon's over-confidence was due
to the promising performance of early Al systems on simple examples. In almost all cases.
however, these early systems turned out to fail miserably when tried out on wider selections
of problems and on more difficult problems.

The first kind of difficulty arose because most early programs contained little or no
knowledge of their subject matter; they succeeded by means of simple syntactic manipula-
tions. A typical story occurred in early machine translation efforts, which were generously
funded by the U.S. National Research Council in an attempt to speed up the translation of
Russian scientific papers in the wake of the Sputnik launch in 1957. It was thought ini-
tially that simple syntactic transformations based on the grammars of Russian and English,
and word replacement using an electronic dictionary, would suffice to preserve the exact
meanings of sentences. The fact is that translation requires general knowledge of the subject
matter in order to resolve ambiguity and establish the content of the sentence. The famous
re-translation of "the spirit is willing but the flesh is weak™ as "the vodka is good but the
meat is rotten” illustrates the difficulties encountered. In 1966, a report by an advisory com-
mittee found that "there has been no machine translation of general scientific text, and none
is in immediate prospect.” All U.S. government funding for academic translation projects
was canceled. Today, machine translation is an imperfect but widely used tool for technical,
commercial, government, and Internet documents.

The second kind of difficulty was the intractability of many of the problems that Al was
attempting to solve. Most of the early Al programs solved problems by trying oui different
combinations of steps until the solution was found. This strategy worked initially because
microworlds contained very few objects and hence very few possible actions and very short
solution sequences. Before the theory of computational complexity was developed, it was
widely thought that "scaling up" to larger problems was simply a matter of faster hardware
and larger memories. The optimism that accompanied the development of resolution theorem
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proving, for example, was soon dampened when researchers failed to prove theorems involv-
ing more than a few dozen facts. The fact that a program can find a solution in principle does
not mean that the program contains any of the mechanisms needed to find it in practice.

The illusion of unlimited computational power was not confined to problem-solving
programs. Early experiments in machine evolution (now called genetic algorithms) (Fried-
berg, 1958; Friedberg et al., 1959) were based on the undoubtedly correct belief that by
making an appropriate series of small mutations to a machine code program, one can gener-
ate a program with good performance for any particular simple task. The idea, then, was to
try random mutations with a selection process to preserve mutations that seemed useful. De-
spite thousands of hours of CPU time, almost no progress was demonstrated. Modern genetic
algorithms use better representations and have shown more success.

Failure to come to grips with the ''combinatorial explosion' was one of the main criti-
cisms of Al contained in the Lighthill report (Lighthill, 1973), which formed the basis for the
decision by the British government to end support for Al research in all but two universities.
(Oral tradition paints a somewhat different and more colorful picture, with political ambitions
and personal animosities whose description is beside the point.)

A third difficulty arose because of some fundamental limitations on the basic structures
being used to generate intelligent behavior. For example, Minsky and Papert’s book Percep-
trons (1969) proved that, although perceptrons (a simple form of neural network) could be
shown to learn anything they were capable of representing, they could represent very little.
In particular, a two-input perceptron could not be trained to recognize when its two inputs
were different. Although their results did not apply to more complex, multilayer networks,
research funding for neural-net research soon dwindled to almost nothing. Ironically, the new
back-propagation learning algorithms for multilayer networks that were to cause an enor-
mous resurgence in neural-net research in the late 1980s were actually discovered first in

1969 (Bryson and Ho, 1969).

Knowledge-based systems: The key to power? (1969-1979)

The picture of problem solving that had arisen during the first decade of Al research was of
a general-purpose search mechanism trying to string together elementary reasoning steps to
find complete solutions. Such approaches have been called weak methods, because, although
general, they do not scale up to large or difficult problem instances. The alternative to weak
methods is to use more powerful, domain-specific knowledge that allows larger reasoning
steps and can more easily handle typically occurring cases in narrow areas of expertise. One
might say that to solve a hard problem, you have to almost know the answer already.

The DENDRAL program (Buchanan et al., 1969) was an early example of this approach.
It was developed at Stanford, where Ed Feigenbaum (a former student of Herbert Simon),
Bruce Buchanan (a philosopher turned computer scientist), and Joshua Lederberg (a Nobel
laureate geneticist) teamed up to solve the problem of inferring molecular structure from the
information provided by a mass spectrometer. The input to the program consists of the ele-
mentary formula of the molecule (e.g., CsH13NO3) and the mass spectrum giving the masses
of the various fragments of the molecule generated when it is bombarded by an electron beam.
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For example, the mass spectrum might contain a peak at m = 15, corresponding to the mass
of a methyl (CH3) fragment.

The naive version of the program generated all possible structures consistent with the
formula, and then predicted what mass spectrum would be observed for each, comparing this
with the actual spectrum. As one might expect, this is intractable for decent-sized molecules.
The DENDRAL researchers consulted analytical chemists and found that they worked by look-
ing for well-known patterns of peaks in the spectrum that suggested common substructures in

the molecule. For example, the following rule is used to recognize a ketone (C=0) subgroup
(which weighs 28):

if there are two peaks at x; and ., such that

(@)r) +tzo=M + 28 (Mis the mass of the whole molecule);
(b)z1 — 28 1s a high peak;

(c)z, — 281s a high peak;

(d) Atleast one of x, and z3 1s high.

thenthere is a ketone subgroup

Recognizing that the molecule contains a particular substructure reduces the number of pos-
sible candidates enormously. DENDRAL was powerful because

All the relevant theoretical knowledge to solve these problems has been mapped over from
its general form in the [spectrum prediction component] ("first principles”) to efficient
special forms ("cookbook recipes"). (Feigenbaumet al., 1971)

The significance of DENDRAL was that it was the first successful knowledge-intensive sys-
tem: its expertise derived from large numbers of special-purpose rules. Later systems also
incorporated the main theme of McCarthy’s Advice Taker approach—the clean separation of
the knowledge (in the form of rules) from the reasoning component.

With this lesson in mind, Feigenbaum and others at Stanford began the Heuristic Pro-
gramming Project (HPP), to investigate the extent to which the new methodology of expert
systems could be applied to other areas of human expertise. The next major effort was in
the area of medical diagnosis. Feigenbaum, Buchanan, and Dr. Edward Shortliffe developed
MYCIN to diagnose blood infections. With about 450 rules, MYCIN was able tc perform
as well as some experts, and considerably better than junior doctors. It also contained two
major differences from DENDRAL. First, unlike the DENDRAL rules, no general theoretical
model existed from which the MYCIN rules could be deduced. They had to be acquired from
extensive interviewing of experts, who in turn acquired them from textbooks, other experts,
and direct experience of cases. Second, the rules had to reflect the uncertainty associated with
medical knowledge. MYCIN incorporated a calculus of uncertainty called certainty factors
(see Chapter 14), which seemed (at the time) to fit well with how doctors assessed the impact
of evidence on the diagnosis.

The importance of domain knowledge was also apparent in the area of understanding
natural language. Although Winograd's SHRDLU system for understanding natural language
had engendered a good deal of excitement, its dependence on syntactic analysis caused some

of the same problems as occurred in the early machine translation work. It was able to
overcome ambiguity and understand pronoun references, but this was mainly because it was
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designed specifically for one area—the blocks world. Several researchers, including Eugene
Charniak, a fellow graduate student of Winograd's at MIT, suggested that robust language
understanding would require general knowledge about the world and a general method for
using that knowledge.

At Yale, the linguist-turned-Al-researcher Roger Schank emphasized this point, claim-
ing, " There is no such thing as syntax," which upset a lot of linguists, but did serve to start a
useful discussion. Schank and his students built a series of programs (Schank and Abelson,
1977; Wilensky, 1978; Schank and Riesbeck, 1981; Dyer, 1983) that all had the task of under-
standing natural language. The emphasis, however, was less on language per se and more on
the problems of representing and reasoning with the knowledge required for language under-
standing. The problems included representing stereotypical situations (Cullingford, 1981),
describing human memory organization (Rieger, 1976; Kolodner, 1983), and understanding
plans and goals (Wilensky, 1983).

The widespread growth of applications to real-world problems caused a concurrent in-
crease in the demands for workable knowledge representation schemes. A large number
of different representation and reasoning languages were developed. Some were based on
logic —for example, the Prolog language became popular in Europe, and the PLANNER fam-
ily in the United States. Others, following Minsky's idea of frames (1975), adopted a more
structured approach, assembling facts about particular object and event types and arranging
the types into a large taxonomic hierarchy analogous to a biological taxonomy.

Al becomes an industry (1980—present)

The first successful commercial expert system, R1, began operation at the Digital Equipment
Corporation (McDermott, 1982). The program helped configure orders for new computer
systems; by 1986, it was saving the company an estimated $40 million a year. By 1988,
DEC’s Al group had 40 expert systems deployed, with more on the way. Du Pont had 100
in use and 500 in development, saving an estimated $10 million a year. Nearly every major
U.S. corporation had its own Al group and was either using or investigating expert systems.

In 1981, the Japanese announced the "Fifth Generation" project, a 10-year plan to build
intelligent computers running Prolog. In response the United States formed the Microelec-
tronics and Computer Technology Corporation (MCC) as a research consortium designed to
assure national competitiveness. In both cases, Al was part of a broad effort, including chip
design and human-interface research. However, the AI components of MCC and the Fifth
Generation projects never met their ambitious goals. In Britain, the Alvey report reinstated
the funding that was cut by the Lighthill report.'?

Overall, the Al industry boomed from a few million dollars in 1980 to billions of dollars
in 1988. Soon after that came a period called the “Al Winter," in which many companies
suffered as they failed to deliver on extravagant promises.

15 To save embarrassment, a new field called IKBS (Intelligent Knowledge-Based Systems) was invented because
Artificial Intelligence had been officially canceled.
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The return of neural networks (1986—present)

Although computer science had largely abandoned the field of neural networks in the late
1970s, work continued in other fields. Physicists such as John Hopfield (1982) used tech-
niques from statistical mechanics to analyze the storage and optimization properties of net-
works, treating collections of nodes like collections of atoms. Psychologists including David
Rumelhart and Geoff Hinton continued the study of neural-net models of memory. As we
discuss in Chapter 20, the real impetus came in the mid-1980s when at least four different
groups reinvented the back-propagationlearning algorithm first found in 1969 by Bryson and
Ho. The algorithm was applied to many learning problems in computer science and psychol-
ogy, and the widespread dissemination of the results in the collection Parallel Distributed
Processing (Rumelhart and McClelland, 1986) caused great excitement.

These so-called connectionist models of intelligent systems were seen by some as di-
rect competitors both to the symbolic models promoted by Newell and Simon and to the
logicist approach of McCarthy and others (Smolensky, 1988). It might seem obvious that
at some level humans manipulate symbols—in fact, Terrence Deacon's book The Symbolic
Species (1997) suggests that this is the dejining characteristic of humans, but the most ardent
connectionists questioned whether symbol manipulation had any real explanatory role in de-
tailed models of cognition. This question remains unanswered, but the current view is that
connectionist and symbolic approaches are complementary, not competing.

Al becomes a science (1987—-present)

Recent years have seen a revolution in both the content and the methodology of work in
artificial intelligence.’® It is now more common to build on existing theories than to propose
brand new ones, to base claims on rigorous theorems or hard experimental evidence rather
than on intuition, and to show relevance to real-world applications rather than toy examples.

Al was founded in part as a rebellion against the limitations of existingfields like control
theory and statistics, but now it is embracing those fields. As David McAllester (1998) put it,

In the early period of Al it seemed plausible that new forms of symbolic computation,
e.g., frames and semantic networks, made much of classical theory obsolete. This led to
a form of isolationism in which Al became largely separated from the rest of computer
science. This isolationism is currently being abandoned. There is a recognition that
machine learning should not be 1solated from informationtheory, that uncertain reasoning
should not be i1solated from stochastic modeling, that search should not be isolated from

classical optimization and control, and that automated reasoning should not be isolated
from formal methods and static analysis.

In terms of methodology, Al has finally come firmly under the scientific method. To be ac-
cepted, hypotheses must be subjected to rigorous empirical experiments, and the results must

16 Some have characterized this change as a victory of the neats—those who think that Al theories should be
grounded in mathematical rigor—over the scruffies—those who would rather try out lots of ideas, write some
programs, and then assess what seems to be working. Both approaches are important. A shift toward neatness
implies that the field has reached a level of stability and maturity. Whether that stability will be disrupted by a
new scruffy idea is another question.
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be analyzed statistically for their importance (Cohen, 1995). Through the use of the Internet
and shared repositories of test data and code, it is now possible to replicate experiments.

The field of speech recognition illustrates the pattern. In the 1970s, a wide variety of
different architectures and approaches were tried. Many of these were rather ad hoc and
fragile, and were demonstrated on only a few specially selected examples. In recent years,
approaches based on hidden Markov models (HMMs) have come to dominate the area. Two
aspects of HMMs are relevant. First, they are based on a rigorous mathematical theory. This
has allowed speech researchers to build on several decades of mathematical results developed
in other fields. Second, they are generated by a process of training on a large corpus of
real speech data. This ensures that the performance is robust, and in rigorous blind tests the
HMMs have been improving their scores steadily. Speech technology and the related field of
handwritten character recognition are already making the transition to widespread industrial
and consumer applications.

Neural networks also fit this trend. Much of the work on neural nets in the 1980s was
done in an attempt to scope out what could be done and to learn how neural nets differ from
"traditional" techniques. Using improved methodology and theoretical frameworks, the field
arrived at an understanding in which neural nets can now be compared with corresponding
techniques from statistics, pattern recognition, and machine learning, and the most promising
technique can be applied to each application. As a result of these developments, so-called
data mining technology has spawned a vigorous new industry.

Judea Pearl's (1988) Probabilistic Reasoning in Intelligent Systems led to a new accep-
tance of probability and decision theory in Al following a resurgence of interest epitomized
by Peter Cheeseman's (1985) article "In Defense of Probability." The Bayesian network
formalism was invented to allow efficient representation of, and nigorous reasoning with,
uncertain knowledge. This approach largely overcomes many problems of the probabilistic
reasoning systems of the 1960s and 1970s; it now dominates Al research on uncertain reason-
ing and expert systems. The approach allows for learning from experience, and it combines
the best of classical Al and neural nets. Work by Judea Pearl (1982a) and by Eric Horvitz and
David Heckerman (Horvitz and Heckerman, 1986; Horvitz et al., 1986) promoted the idea of
normative expert systems: ones that act rationally according to the laws of decision theory
and do not try to imitate the thought steps of human experts. The windows™ operating sys-
tem includes several normative diagnostic expert systems for correcting problems. Chapters
13 to 16 cover this area.

Similar gentle revolutions have occurred in robotics, computer vision, and knowledge
representation. A better understanding of the problems and their complexity properties, com-
bined with increased mathematical sophistication, has led to workable research agendas and
robust methods. In many cases, formalization and specialization have also led to fragmenta-
tion: topics such as vision and robotics are increasingly isolated from " mainstream" Al work.
The unifying view of Al as rational agent design is one that can bring unity back to these
disparate fields.
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The emergence of intelligent agents (1995—present)

Perhaps encouraged by the progress in solving the subproblems of Al researchers have also
started to look at the "whole agent" problem again. The work of Allen Newell, John Laird,
and Paul Rosenbloom on SOAR (Newell, 1990; Laird et al., 1987) is the best-known example
of a complete agent architecture. The so-called situated movement aims to understand the
workings of agents embedded in real environments with continuous sensory inputs. One
of the most important environments for intelligent agents is the Internet. Al systems have
become so common in web-based applications that the “-bot™ suffix has entered everyday
language. Moreover, Al technologies underlie many Internet tools, such as search engines,
recommender systems, and Web site construction systems.

Besides the first edition of this text (Russell and Norvig, 1995), other recent texts have
also adopted the agent perspective (Poole et al., 1998; Nilsson, 1998). One consequence of
trying to build complete agents is the realization that the previously isolated subfields of Al
might need to be reorganized somewhat when their results are to be tied together. In particular,
it is now widely appreciated that sensory systems (vision, sonar, speech recognition, etc.)
cannot deliver perfectly reliable information about the environment. Hence, reasoning and
planning systems must be able to handle uncertainty. A second major consequence of the
agent perspective is that Al has been drawn into much closer contact with other ficlds, such
as control theory and economics, that also deal with agents.

1.4 THE STATE OF THE ART

What can AI do today? A concise answer 1s difficult, because there are so many activities in
so many subfields. Here we sample a few applications; others appear throughout the book.

Autonomous planning and scheduling: A hundred million miles from Earth, NASA's
Remote Agent program became the first on-board autonomous planning program to control
the scheduling of operations for a spacecraft (Jonsson et al., 2000). Remote Agent generated
plans from high-level goals specified from the ground, and it monitored the operation of the
spacecraft as the plans were executed — detecting, diagnosing, and recovering from problems
as they occurred.

Game playing: IBM’s Deep Blue became the first computer program to defeat the
world champion in a chess match when it bested Garry Kasparov by a score of 3.5 to 2.5 in
an exhibition match (Goodman and Keene, 1997). Kasparov said that he felt a "'new kind of
intelligence" across the board from him. Newsweek magazine described the match as '"The
brain's last stand." The value of IBM’s stock increased by $18 billion.

Autonomous control: The ALVINN computer vision system was trained to steer a car
to keep it following a lane. & was placed in CMU’s NAVLAB computer-controlled minivan
and used to navigate across the United States —for 2850 miles it was in control of steering the
vehicle 98% of the time. A human took over the other 2%, mostly at exit ramps. NAVLAB has
video cameras that transmit road images to ALVINN, which then computes the best direction
to steer, based on experience from previous training runs.
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Diagneosis: Medical diagnosis programs based on probabilistic analysis have been able
to perform at the level of an expert physician in several areas of medicine. Heckerman (1991)
describes a case where a leading expert on lymph-node pathology scoffs at a program's diag-
nosis of an especially difficultcase. The creators of the program suggest he ask the computer
for an explanation of the diagnosis. The machine points out the major factors influencing its
decision and explains the subtle interaction of several of the symptoms in this case. Eventu-
ally, the expert agrees with the program.

Logistics Planning: During the Persian Gulf crisis of 1991, U.S. forces deployed a
Dynamic Analysis and Replanning Tool, DART (Cross and Walker, 1994), to do automated
logistics planning and scheduling for transportation. This involved up to 50,000 vehicles,
cargo, and people at a time, and had to account for starting points, destinations, routes, and
conflict resolution among all parameters. The Al planning techniques allowed a plan to be
generated in hours that would have taken weeks with older methods. The Defense Advanced
Research Project Agency (DARPA) stated that this single application more than paid back
DARPA’s 30-year investmentin Al

Robotics: Many surgeons now use robot assistants in microsurgery. HipNav (DiGioia
et al., 1996) is a system that uses computer vision techniques to create a three-dimensional
model of a patient's internal anatomy and then uses robotic control to guide the insertion of a
hip replacement prosthesis.

Language understanding and problem solving: PROVERB (Littman et al., 1999)is a
computer program that solves crossword puzzles better than most humans, using constraints
on possible word fillers, a large database of past puzzles, and a variety of information sources
including dictionaries and online databases such as a list of movies and the actors that appear
in them. For example, it determines that the clue '"Nice Story" can be solved by "ETAGE
because its database includes the clue/solution pair " Story in France/ETAGE” and because it
recognizes that the patterns "Nice X and "X in France" often have the same solution. The
program does not know that Nice is a city in France, but it can solve the puzzle.

These are just a few examples of artificial intelligence systems that exist today. Not
magic or science fiction—but rather science, engineering, and mathematics, to which this
book provides an introduction.

1.5 SUMMARY

This chapter defines Al and establishes the cultural background against which it has devel-
oped. Some of the important points are as follows:

e Different people think of Al differently. Two important questions to ask are: Are you
concerned with thinking or behavior? Do you want to model humans or work from an
ideal standard?

e In this book, we adopt the view that intelligence is concerned mainly with rational
action. Ideally, an intelligent agent takes the best possible action in a situation. We
will study the problem of building agents that are intelligent in this sense.
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e Philosophers (going back to 400 B.c.) made Al conceivable by considering the ideas
that the mind is in some ways like a machine, that it operates on knowledge encoded in
some internal language, and that thought can be used to choose what actions to take.

e Mathematicians provided the tools to manipulate statements of logical certainty as well
as uncertain, probabilistic statements. They also set the groundwork for understanding
computation and reasoning about algorithms.

e Economists formalized the problem of making decisions that maximize the expected
outcome to the decision-maker.

e Psychologists adopted the idea that humans and animals can be considered information-
processing machines. Linguists showed that language use fits into this model.

e Computer engineers provided the artifacts that make Al applications possible. Al pro-
grams tend to be large, and they could not work without the great advances in speed and
memory that the computer industry has provided.

e Control theory deals with designing devices that act optimally on the basis of feedback
from the environment. Initially, the mathematical tools of control theory were quite
different from Al but the fields are coming closer together.

o The history of AT has had cycles of success, misplaced optimism, and resulting cutbacks
in enthusiasm and funding. There have also been cycles of introducing new creative
approaches and systematically refining the best ones.

e Al has advanced more rapidly in the past decade because of greater use of the scientific
method in experimenting with and comparing approaches.

e Recent progress in understanding the theoretical basis for intelligence has gone hand in
hand with improvements in the capabilities of real systems. The subfields of Al have
become more integrated, and Al has found common ground with other disciplines.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

The methodological status of artificial intelligence is investigated in The Sciences of the Ar-
tificial, by Herb Simon (1981), which discusses research areas concerned with complex ar-
tifacts. It explains how Al can be viewed as both science and mathematics. Cohen (1995)
gives an overview of experimental methodology within Al Ford and Hayes (1995) give an
opinionated view of the usefulness of the Turing Test.

Artificial Intelligence: The Very Idea, by John Haugeland (1985) gives a readable ac-
count of the philosophical and practical problems of Al. Cognitive science is well described
by several recent texts (Johnson-Laird, 1988; Stillings et al., 1995; Thagard, 1996) and by
the Encyclopedia of the Cognitive Sciences (Wilson and Keil, 1999). Baker (1989) covers
the syntactic part of modern linguistics, and Chierchia and McConnell-Ginet (1990) cover
semantics. Jurafsky and Martin (2000) cover computational linguistics.

Early Alis described in Feigenbaum and Feldman's Computers and Thought (1963),
Minsky's Semantic Information Processing (1968), and the Machine Intelligence series edited
by Donald Michie. A large number of influential papers have been anthologized by Webber
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and Nilsson (1981) and by Luger (1995). Early papers on neural networks are collected in
Neurocomputing (Anderson and Rosenfeld, 1988). The Encyclopedia of AI (Shapiro, 1992)
contains survey articles on almost every topic in Al. These articles usually provide a good
entry point into the research literature on each topic.

The most recent work appears in the proceedings of the major Al conferences: the bi-
ennial International Joint Conference on Al (IJCAT), the annual European Conference on Al
(ECALI), and the National Conference on Al, more often known as AAAI, after its sponsoring
organization. The major journals for general Al are Arfificial Intelligence, Computational
Intelligence, the IEEE Transactions on Pattern Analysis and Machine Intelligence, IEEE In-
telligent Systems, and the electronic Journal of Artificial Intelligence Research. There are also
many conferences and journals devoted to specific areas, which we cover in the appropriate
chapters. The main professional societies for Al are the American Association for Artificial
Intelligence (AAAI), the ACM Special Interest Group in Artificial Intelligence (SIGART),
and the Society for Artificial Intelligence and Simulation of Behaviour (AISB). AAAD's AI
Magazine contains many topical and tutorial articles, and its website, aaai.org, contains news
and background information.

EXERCISES

These exercises are intended to stimulate discussion, and some might be set as term projects.
Alternatively, preliminary attempts can be made now, and these attempts can be reviewed
after the completion of the book.

1.1 Define in your own words: (a) intelligence, (b) artificial intelligence, (c) agent.

1.2 Read Turing's original paper on Al (Turing, 1950). In the paper, he discusses several
potential objections to his proposed enterprise and his test for intelligence. Which objec-
tions still carry some weight? Are his refutations valid? Can you think of new objections
arising from developments since he wrote the paper? In the paper, he predicts that, by the
year 2000, a computer will have a 30% chance of passing a five-minute Turing Test with an
unskilled interrogator. What chance do you think a computer would have today? In another

50 years?
1.3 Every year the Loebner prize is awarded to the program that comes closest to passing

a version of the Turing test. Research and report on the latest winner of the Loebner prize.
What techniques does it use? How does it advance the state of the at in AI?

1.4 There are well-known classes of problems that are intractably difficult for computers,
and other classes that are provably undecidable. Does this mean that Al is impossible?

1.5 Suppose we extend Evans's ANALOGY program so that it can score 200 on a standard
IQ test. Would we then have a program more intelligent than a human? Explain.

1.6 How could introspection—reporting on one's inner thoughts— be inaccurate? Could I
be wrong about what I'm thinking? Discuss.
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1.7 Examine the Al literature to discover whether the following tasks can currently be
solved by computers:
a. Playing a decent game of table tennis (ping-pong).
. Driving in the center of Cairo.
. Buying aweek's worth of groceries at the market.
. Buying a week's worth of groceries on the web.
. Playing a decent game of bridge at a competitive level.
. Discovering and proving new mathematical theorems.
. Writing an intentionally funny story.
. Giving competent legal advice in a specialized area of law.
. Translating spoken English into spoken Swedish in real time.
Jj- Performing a complex surgical operation.

SR -, e T
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For the currently infeasible tasks, try to find out what the difficulties are and predict when, if
ever, they will be overcome.

1.8 Some authors have claimed that perception and motor skills are the most important part
of intelligence, and that *higher level" capacities are necessarily parasitic— simple add-ons to
these underlying facilities. Certainly, most of evolution and a large part of the brain have been
devoted to perception and motor skills, whereas Al has found tasks such as game playing and
logical inference to be easier, in many ways, than perceiving and acting in the real world. Do
you think that Al’s traditional focus on higher-level cognitive abilities is misplaced?

1.9 Why would evolution tend to result in systems that act rationally? What goals are such
systems designed to achieve?

1.10 Are reflex actions (such as moving your hand away from a hot stove) rational? Are
they intelligent?

1.11 "Surely computers cannot be intelligent—they can do only what their programmers
tell them.” Is the latter statement true, and does it imply the former?

1.12 "Surely animals cannot be intelligent—they can do only what their genes tell them."
Is the latter statement true, and does it imply the former?

1.13 "Surely animals, humans, and computers cannot be intelligent —they can do only what
their constituent atoms are told to do by the laws of physics.” Is the latter statement true, and
does it imply the former?
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26.1

In which we consider what it means to think and whether artifacts could and
should ever do so.

As we mentioned in Chapter 1, philosophers have been around for much longer than
computers and have been trying to resolve some questions that relate to Al: How do minds
work? Js it possible for machines to act intelligently in the way that people do, and if they did,
would they have minds? What are the ethical implications of intelligent machines? For the
first 25 chapters of this book, we have considered questions from Al itself, now we consider
the philosopher’s agenda for one chapter.

First, some terminology: the assertion that machines could possibly act intelligently (or,
perhaps better, act as if they were intelligent) is called the weak AI hypothesis by philoso-
phers, and the assertion that machines that do so are actually thinking (as opposed to sinu-
lating thinking) is called the strong AI hypothesis.

Most Al researchers take the weak AI hypothesis for granted, and don't care about the
strong Al hypothesis—as long as their program works, they don't care whether you call it a
simulation of intelligence or real intelligence. All Al researchers should be concerned with
the ethical implications of their work.

WEAK Al: CAN MACHINES ACT INTELLIGENTLY?

Some philosophers have tried to prove that Al is impossible; that machines cannot possibly
act intelligently. Some have used their arguments to call for a stop to AT research:

Artificial intelligence pursued within the cult of computationalism stands not even a
ghost of a chance of producing durable results ... it is time to divert the efforts of AV
researchers— and the considerable monies made available for their support —into avenues
other than the computational approach. {Sayre, 1993)

Clearly, whether Al is impossible depends on how it is defined. In essence, Alis the quest
for the best agent program on a given architecture. With this formulation, Al is by definition
possible: for any digital architecture consisting of % bits of storage there are exactly 2% agent
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AN MACHNES
THINK?

programs, and all we have to do to find the best one is enumerate and test them all. This
might not be feasible for large k, but philosophers deal with the theoretical, not the practical.

Our definition of Al works well for the engineering problem of finding a good agent,
given an architecture. Therefore, we're tempted to end this section right now, answering the
title question in the affirmative. But philosophers are interested in the problem of compar-
ing two architectures —human and machine. Furthermore, they have traditionally posed the
question as, ""Can machines think?" Unfortunately, this question is ill-defined. To see why,
consider the following questions:

e Can machines fly?

e Can machines swim?

Most people agree that the answer to the first question is yes, airplanes can fly, but the answer
to the second is no; boats and submarines do move through the water, but we do not call
that swimming. However, neither the questions nor the answers have any impact at all on
the working lives of acronautic and naval engineers or on the users of their products. The
answers have very little to do with the design or capabilities of airplanes and submarines, and
much more to do with the way we have chosen to use words. The word "swim" in English
has come to mean "to move along in the water by movement of body parts," whereas the
word "fly" has no such limitation on the means of locomotion.' The practical possibility of
"thinking machines" has been with us for only 50 years or so, not long enough for speakers
of English to settle on a meaning for the word "think."

Alan Turing, in his famous paper " Computing Machinery and Intelligence" (Turing,
1950), suggested that instead of asking whether machines can think, we should ask whether
machines can pass a behavioral intelligence test, which has come to be called the Turing
Test. The test is for a program to have a conversation (via online typed messages) with an
interrogator for 5 minutes. The interrogator then has to guess if the conversation is with a
program or a person; the program passes the test if it fools the interrogator 30% of the time.
Turing conjectured that, by the year 2000, a computer with a storage of 10° units could be
programmed well enough to pass the test, but he was wrong. Some people have been fooled
for 5 minutes; for example, the ELIZA program and the Internet chatbot called MGONZ have
fooled humans who didn't realize they might be talking to a program, and the program ALICE
fooled one judge in the 2001 Loebner Prize competition. But no program has come close to
the 30% criterion against trained judges, and the field of Al as a whole has paid little attention
to Turing tests.

Turing also examined a wide variety of possible objections to the possibility of intelli-
gent machines, including virtually all of those that have been raised in the half century since
his paper appeared. We will look at some of them.

The argument from disability

The "argument from disability" makes the claim that "a machine can never do X" As exam-
ples of X, Turing lists the following:

1 In Russian, the equivalent of "swim" dees apply to ships.
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Be kind, resourceful, beautiful, friendly, have initiative, have a sense of humor, tell right
from wrong, make rmstakes fall in love, enjoy strawberries and cream, make someone
fall in love with it, leam from experience, use words propetly, be the subject of its own
thought, have as much diversity of behavior as man, do something really new.

Turing had to use his intuition to guess what would be possible in the future, but we have the
luxury of looking back at what computers have already done. It is undeniable that computers
now do many things that previously were the domain of humans alone. Programs play chess,
checkers and other games, inspect parts on assembly lines, check the spelling of word pro-
cessing documents, steer cars and helicopters, diagnose diseases, and do hundreds of other
tasks as well as or better than humans. Computers have made small but significant discover-
1es in astronomy, mathematics, chemistry, mineralogy, biology, computer science, and other
fields. Each of these required performance at the level of a human expert.

Given what we now know about computers, it 1s not surprising that they do well at
combinatorial problems such as playing chess. But algorithms also perform at human levels
on tasks that seemingly involve human judgment, or as Turing put it, "learning from experi-
ence" and the ability to "tell right from wrong." As far back as 1955, Paul Meehl (see also
Grove and Meehl, 1996) studied the decision-making processes of trained experts at subjec-
tive tasks such as predicting the success of a student in a training program, or the recidivism
of a criminal. In 19 out of the 20 studies he looked at, Mechl found that simple statistical
learning algorithms (such as linear regression or naive Bayes) predict better than the experts.
The Educational Testing Service has used an automated program to grade millions of essay
questions on the GMAT exam since 1999. The program agrees with human graders 97% of
the time, about the same level that two human graders agree (Burstein et al., 2001).

Itis clear that computers can do many things as well as or better than humans, including
things that people believe require great human insight and understanding. This does not mean,
of course, that computers use insight and understanding in performing these tasks —those are
not part of behavior, and we address such questions elsewhere —but the point 1s that one's
first guess about the mental processes required to produce a given behavior is often wrong. It
1s also true, of course, that there are many tasks at which computers do not yet excel (to put
it mildly), including Turing's task of carrying on an open-ended conversation.

The mathematical objection

It 1s well known, through the work of Turing (1936) and Godel (1931), that certain math-
ematical questions are in principle unanswerable by particular formal systems. Gédel’s in-
completeness theorem (see Section 9.5) 1s the most famous example of this. Briefly, for any
forrnal axiomatic system F powerful enough to do arithmetic, it is possible to construct a
so-called “Godel sentence" (7(£7) with the following properties:

e G(F)1is asentence of F,but cannot be proved within F.
e If Fis consistent, then G(F') is true.

Philosophers such as J. R. Lucas (1961) have claimed that this theorem shows that machines
are mentally inferior to humans, because machines are formal systems that are limited by the
incompleteness theorem —they cannot establish the truth of their own Gédel sentence —while
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humans have no such limitation. This claim has caused decades of controversy, spawning a
vast literature including two books by the mathematician Sir Roger Penrose (1989, 1994)
that repeat the claim with some fresh twists (such as the hypothesis that humans are different
because their brains operate by quantum gravity). We will examine only three of the problems
with the claim.

First, Godel’s incompleteness theorem applies only to formal systems that are powerful
enough to do arithmetic. This includes Turing machines, and Lucas's claim is in part based
on the assertion that computers are Turing machines. This is a good approximation, but is not
quite true. Turing machines are infinite, whereas computers are finite, and any computer can
therefore be described as a (very large) system in propositional logic, which is not subject to
Godel’s incompleteness theorem.

Second, an agent should not be too ashamed that it cannot establish the truth of some
sentence while other agents can. Consider the sentence

J. R. Lucas cannot consistently assert that this sentenceis true.

If Lucas asserted this sentence then he would be contradicting himself, so therefore Lucas
cannot consistently assert it, and hence it must be true. (The sentence cannot be false, because
if it were then Lucas could not consistently assert it, so it would be true.) We have thus
demonstrated that there is a sentence that Lucas cannot consistently assert while other people
(and machines) can. But that does not make us think less of Lucas. To take another example,
no human could compute the sum of 10 billion 10 digit numbers in his or her lifetime, but a
computer could do it in seconds. Still, we do not see this as a fundamental limitation in the
human's ability to think. Humans were behaving intelligently for thousands of years before
they invented mathematics, so it is unlikely that mathematical reasoning plays more than a
peripheral role in what it means to be intelligent.

Third, and most importantly, even if we grant that computers have limitations on what
they can prove, there is no evidence that humans are immune from those limitations. Itis all
too easy to show rigorously that a formal system cannot do X, and then claim that humans can
do X using their own informal method, without giving any evidence for this claim. Indeed,
it is impossible to prove that humans are not subject to Godel’s incompleteness theorem,
because any rigorous proof would itself contain a formalization of the claimed unformalizable
human talent, and hence refute itself. So we are left with an appeal to intuition that humans
can somehow perform superhuman feats of mathematical insight. This appeal is expressed
with arguments such as "we must assume our own consistency, if thought is to be possible at
all" (Lucas, 1976). But if anything, humans are known to be inconsistent. This is certainly
true for everyday reasoning, but it is also true for careful mathematical thought. A famous
example is the four-color map problem. Alfred Kempe published a proof in 1879 that was
widely accepted and contributed to his election as a Fellow of the Royal Society. In 1890,
however, Percy Heawood pointed out a flaw and the theorem remained unproved until 1977.

The argument from informality

One of the most influential and persistent criticisms of Al as an enterprise was raised by Tur-
ing as the "argument from informality of behavior." Essentially, this is the claim that human
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behavior is far too complex to be captured by any simple set of rules and that because com-
puters can do no more than follow a set of rules, they cannot generate behavior as intelligent
as that of humans. The inability to capture everything in a set of logical rules is called the
qualification problem in Al (See Chapter 10.)

The principal proponent of this view has been the philosopher Hubert Dreyfus, who
has produced a series of influential critiques of artificial intelligence: What Computers Can't
Do (1972), What Computers Still Can't Do (1992), and, with his brother Stuart, Mind Over
Machine (1986).

The position they criticize came to be called "Good (Old-FashionedAl,” or GOFAL a
term coined by Haugeland (1985). GOFAI is supposed to claim that all intelligent behavior
can be captured by a system that reasons logically from a set of facts and rules describing the
domain. It therefore corresponds to the simplest logical agent described in Chapter 7. Dreyfus
is correct in saying that logical agents are vulnerable to the qualification problem. As we saw
in Chapter 13, probabilistic reasoning systems are more appropriate for open-ended domains.
The Dreyfus critique therefore is not addressed against computers per se, but rather against
one particular way of programming them. It is reasonable to suppose, however, that a book
called What First-Order Logical Rule-Based Systems Without Learning Can't Do might have
had less impact.

Under Dreyfus's view, human expertise does include knowledge of some rules, but only
as a "holistic context" or "background" within which humans operate. He gives the example
of appropriate social behavior in giving and receiving gifts: " Normally one simply responds
in the appropriate circumstances by giving an appropriate gift." One apparently has "a direct
sense of how things are done and what to expect." The same claim is made in the context of
chess playing: "A mere chess master might need to figure out what to do, but a grandmaster
just sees the board as demanding a certain move . . .the right response just pops into his or her
head." Itis certainly true that much of the thought processes of a present-giver or grandmaster
is done at a level that is not open to introspection by the conscious mind. But that does not
mean that the thought processes do not exist. The important question that Dreyfus does not
answer is sow the right move gets into the grandmaster's head. One is reminded of Daniel
Dennett's (1984) comment,

It 1s rather as if philosophers were to proclaim themselves expert explainers of the meth-
ods of stage magicians, and then, when we ask how the magician does the sawing-the-
lady-in-half trick. they explain that it is really quite obvious: the magician doesn't really
saw her in half; he simply makes it appear that he does. "But how does he do #hat?’ we
ask. "Not our department," say the philosophers.

Dreyfus and Dreyfus (1986) propose a five-stage process of acquiring expertise, beginning
with rule-based processing (of the sort proposed in GOFAI) and ending with the ability to
select correct responses instantaneously. In making this proposal, Dreyfus and Dreyfus in
effect move from being Al critics to Al theorists —they propose a neural network architecture
organized into a vast "case library," but point out several problems. Fortunately, all of their
problems have been addressed, some with partial success and some with total success. Their
problems include:
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1. Good generalization from examples cannot be achieved without background knowl-
edge. They claim no one has any idea how to incorporate background knowledge into
the neural network learning process. In fact, we saw in Chapter 19 that there are tech-
niques for using prior knowledge in learning algorithms. Those techniques, however,
rely on the availability of knowledge in explicit form, something that Dreyfus and Drey-
fus strenuously deny. In our view, this is a good reason for a serious redesign of cur-
rent models of neural processing so that they can take advantage of previously learned
knowledge in the way that other learning algorithms do.

2. Neural network learning is a form of supervised learning (see Chapter 18), requiring
the prior identification of relevant inputs and correct outputs. Therefore, they claim,
it cannot operate autonomously without the help of a human trainer. In fact, learning
without a teacher can be accomplished by unsupervised learning (Chapter 20) and
reinforcement learning (Chapter 21).

3. Learning algorithms do not perform well with many features, and if we pick a subset
of features, "there is no known way of adding new features should the current set prove
inadequate to account for the learned facts." In fact, new methods such as support vector
machines handle large feature sets very well. As we saw in Chapter 19, there are also
principled ways to generate new features, although much more work is needed.

4. The brain is able to direct its sensors to seek relevant information and to process it to
extract aspects relevant to the current situation. But, they claim, "Currently, no details
of this mechanism are understood or even hypothesized in a way that could guide Al
research." In fact, the field of active vision, underpinned by the theory of information
value (Chapter 16), is concerned with exactly the problem of directing sensors, and
already some robots have incorporated the theoretical results obtained.

In sum, many of the issues Dreyfus has focused on—background commonsense knowledge,
the qualification problem, uncertainty, learning, compiled forms of decision making, the im-
portance of considering situated agents rather than disembodied inference engines —have by
now been incorporated into standard intelligent agent design. In our view, this is evidence of
Al’s progress, not of its impossibility.

26.2 STRONG Al: CAN MACHINES REALLY THINK?

Many philosophers have claimed that a machine that passes the Turing Test would still not
be actually thinking, but would be only a simulation of thinking. Again, the objection was
foreseen by Turing. He cites a speech by Professor Geoffrey Jefferson (1949):

Not until a machine could write a sonnet or compose a concerto because of thoughts and
emotions felt, and not by the chance fall of symbols, could we agree that machine equals
brain—that is, not only write it but know that it had written it.

Turing calls this the argument from consciousness — the machine has to be aware of its own
mental states and actions. While consciousness is an important subject, Jefferson's key point
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actually relates to phenomenology, or the study of direct experience — the machine has to
actually feel emotions. Others focus on intentionality — that is, the question of whether the
machine's purported beliefs, desires, and other representations are actually "about" some-
thing in the real world.

Turing's response to the objection is interesting. He could have presented reasons that
machines can in fact be conscious (or have phenomenclogy, or have intentions). Instead, he
maintains that the question is just as ill-defined as asking, "Can machines think?" Besides,
why should we insist on a higher standard for machines than we do for humans? After all,
in ordinary life we never have any direct evidence about the internal mental states of other
humans. Nevertheless, Turing says, "'Instead of arguing continually over this point, it is usual
to have the polite convention that everyone thinks."

Turing argues that Jefferson would be willing to extend the polite convention to ma-
chines if only he had experience with ones that act intelligently. He cites the following dialog,
which has become such a part of Al's oral tradition that we simply have to include it:

HUMAN: In the first line of your sonnet which reads "shall I compare thee to a summer's
day," would not a "spring day" do as well or better?

MACHINE: It wouldn't scan.

HUMAN: How about "a winter's day." That would scan all right.

MACHINE: Yes, but nobody wants to be compared to a winter's day.

HUMAN: Would you say Mr. Pickwick reminded you of Christmas?

MACHINE: In a way.

HUMAN: Yet Christmas is a winter's day, and I do not think Mr. Pickwick would mind
the comparison.

MACHINE: Tdon't think you're serious. By a winter's day one means a typical winter's
day, rather than a special one like Christmas.

Turing concedes that the question of consciousness is a difficult one, but denies that it has
much relevance to the practice of Al: "I do not wish to give the impression that I think there
is no mystery about consciousness ... But I do not think these mysteries necessarily need
to be solved before we can answer the question with which we are concerned in this paper.”
We agree with Turing—we are interested in creating programs that behave intelligently, not
in whether someone else pronounces them to be real or simulated. On the other hand, many
philosophers are keenly interested in the question. To help understand it, we will consider the
question of whether other artifacts are considered real.

In 1848, artificial urea was synthesized for the first time, by Frederick Wohler. This was
important because it proved that organic and inorganic chemistry could be united, a question
that had been hotly debated. Once the synthesis was accomplished, chemists agreed that
artificial urea was urea, because it had all the right physical properties. Similarly, artificial
sweeteners are undeniably sweeteners, and artificial insernination (the other Al)is undeniably
insemination. On the other hand, artificial flowers are not flowers, and Daniel Dennett points
out that artificial Chateau Latour wine would not be Chateau Latour wine, even if it was
chemically indistinguishable, simply because it was not made in the right place in the right
way. Nor is an artificial Picasso painting a Picasso painting, no matter what it looks like.
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We can conclude that in some cases, the behavior of an artifact is important, while in
others it is the artifact's pedigree that matters. Which one is important in which case seems
to be a matter of convention. But for artificial minds, there is no convention, and we are left
to rely on intuitions. The philosopher John Searle (1980) has a strong one:

No one supposes that a computer simulation of a storm will leave us all wet ... Why on
earth would anyone in his right mind suppose a computer simulation of mental processes
actually had mental processes? (pp. 37-38)

While it is easy to agree that computer simulations of storms do not make us wet, it is not
clear how to carry this analogy over to computer simulations of mental processes. After all,
a Hollywood simulation of a storm using sprinklers and wind machines does make the actors
wet. Most people are comfortable saying that a computer simulation of addition is addition,
and a computer simulation of a chess game is a chess game. Are mental processes more like
storms, or more like addition or chess? Like Chateau Latour and Picasso, or like urea? That
all depends on your theory of mental states and processes.

The theory of functionalism says that a mental state is any intermediate causal condi-
tion between input and output. Under functionalist theory, any two systems with isomorphic
causal processes would have the same mental states. Therefore, a computer program could
have the same mental states as a person. Of course, we have not yet said what "isomorphic"
really means, but the assumption is that there is some level of abstraction below which the
specific implementation does not matter; as long as the processes are isomorphic down to the
this level, the same mental states will occur.

In contrast, the biological naturalism theory says that mental states are high-level
emergent features that are caused by low-level neurological processes in the neurons, and
it is the (unspecified) properties of the neurons that matter. Thus, mental states cannot be
duplicated just on the basis of some program having the same functional structure with the
same input—output behavior; we would require that the program be running on an architecture
with the same causal power as neurons. The theory does not say why neurons have this causal
power, nor what other physical instantiations might or might not have it.

To investigate these two viewpoints we will first look at one of the oldest problems in
the philosophy of mind, and then turn to three thought experiments.

The mind-body problem

The mind-body problem asks how mental states and processes are related to bodily (specif-
ically, brain) states and processes. As if that wasn't hard enough, we will generalize the
problem to the ""'mind-architecture" problem, to allow us to talk about the possibility of ma-
chines having minds.

Why is the mind—body problem a problem? The first difficulty goes back to René
Descartes, who considered how an immortal soul interacts with a mortal body and concluded
that the soul and body are two distinct types of things—a dualist theory. The monist theory,
often called materialism,holds that there are no such things as immaterial souls; only mate-
rial objects. Consequently, mental states —such as being in pain, knowing that one is riding a
horse, or believing that Viennais the capital of Austria—are brain states. John Searle pithily



Section 26.2.

Strong Al: Can Machines Really Think? 955

FREE WILL

CONSCIQUSNESS

INTENTIONAL STATE

sums up the idea with the slogan, "Brains cause minds."”

The materialist must face at least two serious obstacles. The first is the problem of
free will: how can it be that a purely physical mind, whose every transformation is governed
strictly by the laws of physics, still retains any freedom of choice? Most philosophers regard
this problem as requiring a careful reconstitution of our naive notion of free will, rather than
presenting any threat to materialism. The second problem concerns the general issue of con-
sciousness (and related, but not identical, questions of understanding and self-awareness).
Put simply, why is it that it feels like something to have certain brain states, whereas 1t pre-
sumably does not feel like anything to have other physical states (e.g., being a rock).

To begin to answer such questions, we need ways to talk about brain states at levels
more abstract than specific configurations of all the atoms of the brain of a particular person
at a particular time. For example, as I think about the capital of Austria, my brain undergoes
myriad tiny changes from one picosecond to the next, but these do not constitute a qualitative
change in brain state. To account for this, we need a notion of brain state fypes, under which
we can judge whether two brain states belong to the same or different types. Various authors
have various positions on what one means by #ype in this case. Almost everyone believes that
if one takes a brain and replaces some of the carbon atoms by a new set of carbon atoms,?
the mental state will not be affected. This is a good thing because real brains are continually
replacing their atoms through metabolic processes, and yet this in itself does not seem to
cause major mental upheavals.

Now let's consider a particular kind of mental state: the propositional attitudes (first
discussed in Chapter 10), which are also known as intentional states. These are states, such
as believing, knowing, desiring, fearing, and so on, that refer to some aspect of the external
world. For example, the belief that Viennais the capital of Austriais a beliefabout a particular
city and its status. We will be asking whether it is possible for computers to have intentional
states, so it helps to understand how to characterize such stales. For example, one might say
that the mental state in which I desire a hamburger differs from the state in which I desire
a pizza because hamburger and pizza are different things in the real world. That is to say,
intentional states have a necessary connection to their objects in the external world. On the
other hand, we argued just a few paragraphs back that mental states are brain states; hence the
identity or non-identity of mental states should be determined by staying completely "inside
the head," without reference to the real world. To examine this dilemma we turn to a thought
experiment that attempts to separate intentional states from their external objects.

The "brain in a vat' experiment

Imagine, if you will, that your brain was rcmoved from your body at birth and placed in
a marvelously engineered vat. The vat sustains your brain, allowing it to grow and de-
velop. At the same time, electronic signals are fed to your brain from a computer simula-
tion of an entirely fictitious world, and motor signals from your brain are intercepted and
used to modify the simulation as appropriate.* Then the brain could have the mental state

2 Perhaps even atoms of a different isotope of carbon, as is sometimes done in brain-scanning experiments.
3 This situation may be familiar to those who have seen the 1999 film, The Matrix.
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DyingFor(Me, Hamburger) even though it has no body to feel hunger and no taste buds to
experience taste, and there may be no hamburger in the real world. In that case, would this
be the same mental state as one held by a brain in a body?

One way to resolve the dilemma is to say that the content of mental states can be inter-
preted from two different points of view. The ""wide content'' view interprets it from the point
of view of an omniscient outside observer with access to the whole situation, who can distin-
guish differences in the world. So under wide content the brain-in-a-vat beliefs are different
from those of a "normal" person. Narrow content considers only the internal subjective
point of view, and under this view the beliefs would all be the same.

The belief that a hamburger is delicious has a certain intrinsic nature —there is some-
thing that it is like to have this belief. Now we get into the realm of qualia, or intrinsic
experiences (from the Latin word meaning, roughly, "such things"). Suppose, through some
accident of retinal and neural wiring, that person X experiences as red the color that person
Y perceives as green, and vice-versa. Then when both see the same traffic light they will act
the same way, but the experience they have will be in some way different. Both may agree
that the name for their experience is "the light is red," but the experiences feel different. Itis
not clear whether that means they are the same or different mental states.

We now turn to another thought experiment that gets at the question of whether physical
objects other than human neurons can have mental states.

The brain prosthesis experiment

The brain prosthesis experiment was introduced in the mid-1970s by Clark Glymour and
was touched on by John Searle (1980), but is most commonly associated with the work of
Hans Moravec (1988). It goes like this: Suppose neurophysiology has developed to the point
where the input—output behavior and connectivity of all the neurons in the human brain are
perfectly understood. Suppose further that we can build microscopic electronic devices that
mimic this behavior and can be smoothly interfaced to neural tissue. Lastly, suppose that
some miraculous surgical technique can replace individual neurons with the corresponding
electronic devices without interrupting the operation of the brain as a whole. The experiment
consists of gradually replacing all the neurons in someone's head with electronic devices and
then reversing the process to return the subject to his or her normal biological state.

We are concerned with both the external behavior and the internal experience of the
subject, during and after the operation. By the definition of the experiment, the subject's
external behavior must remain unchanged compared with what would be observed if the
operation were not carried out.* Now although the presence or absence of consciousness
cannot easily be ascertained by a third party, the subject of the experiment ought at least to
be able to record any changes in his or her own conscious experience. Apparently, there 1s
a direct clash of intuitions as to what would happen. Moravec, a robotics researcher and
functionalist, is convinced his consciousness would remain unaffected. Searle, a philosopher
and biological naturalist, is equally convinced his consciousness would vanish:

4 One can imagine using an identical “"control" subject whois given a placebo operation, so that the two behav-
iors can be compared.
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You find, to your total amazement, that you are indeed losing control of your external
behavior. You find, for example, that when doctors test your vision, you hear them say
"We are holding up a red object in front of you, please tell us what you see." You want
to cry out "I can't see anything. I'm going totally blind." But you hear your voice saying
in a way that is completely out of your control, "I see a red object in front of me." ...
['Y]our conscious experience slowly shrinks to nothing, while your externally observable
behaviorremains the same. (Searle, 1992)

But one can do more than argue from intuition. First, note that, in order for the external
behavior to remain the same while the subject gradually becomes unconscious, it must be the
case that the subject's volitionis removed instantaneously and totally; otherwise the shrinking
of awareness would be reflected in external behavior—'"Help, I'm shrinking!"" or words to
that effect. This instantaneous removal of volition as a result of gradual neuron-at-a-time
replacement seems an unlikely claim to have to make.

Second, consider what happens if we do ask the subject questions concerning his or
her conscious experience during the period when no real neurons remain. By the conditions
of the experiment, we will get responses such as "1 feel fine. 1 must say I'm a bit surprised
because I believed Searle’s argument." Or we might poke the subject with a pointed stick and
observe the response, " Ouch, that hurt." Now, in the normal course of affairs, the skeptic can
dismiss such outputs from Al programs as mere contrivances. Certainly, it is easy enough to
use a rule such as "If sensor 12 reads 'High' then output 'Ouch.’ »* But the point here is that,
because we have replicated the functional properties of a normal human brain, we assume
that the electronic brain contains no such contrivances. Then we must have an explanation of
the manifestations of consciousness produced by the electronic brain that appeals only to the
functional properties of the neurons. And this explanation must also apply to the real brain,
which has the same functional properties. There are, it seems, only two possible conclusions:

1. The causal mechanisms of consciousness that generate these kinds of outputs in normal
brains are still operating in the electronic version, which is therefore conscious.

2. The conscious mental events in the normal brain have no causal connection to behavior,
and are missing from the electronic brain, which is therefore not conscious.

Although we cannot rule out the second possibility, it reduces consciousness to what philoso-
phers call an epiphenomenal role — something that happens, but casts no shadow, as it were,
on the observable world. Furthermore, if consciousness is indeed epiphenomenal, then the
brain must contain a second, unconscious mechanism that is responsible for the '"Ouch."

Third, consider the situation after the operation has been reversed and the subject has a
normal brain. Once again, the subject's external behavior must, by definition, be as if the op-
eration had not occurred. In particular, we should be able to ask, " What was it like during the
operation? Do you remember the pointed stick?” The subject must have accurate memories
of the actual nature of his or her conscious experiences, including the qualia, despite the fact
that, according to Searle there were no such experiences.

Searle might reply that we have not defined the experiment properly. If the real neurons
are, say, put into suspended animation between the time they are extracted and the time they
are replaced in the brain, then of course they will not "remember” the experiences during
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the operation. To deal with this eventuality, we need to make sure that the neurons' state is
updated to reflect the internal state of the artificial neurons they are replacing. If the supposed
"nonfunctional" aspects of the real neurons then result in functionally different behavior from
that observed with artificial neurons still in place, then we have a simple reductio ad absur-
durn, because that would mean that the artificial neurons are not functionally equivalent to the
real neurons. (See Exercise 26.3 for one possible rebuttal to this argument.)

Patricia Churchland (1986) points out that the functionalist arguments that operate at
the level of the neuron can also operate at the level of any larger functional unit—a clump
of neurons, a mental module, a lobe, a hemisphere, or the whole brain. That means that if
you accept the notion that the brain prosthesis experiment shows that the replacement brain
1s conscious, then you should also believe that consciousness is maintained when the entire
brain is replaced by a circuit that maps from inputs to outputs via a huge lookup table. This is
disconcerting to many people (including Turing himself), who have the intuition that lookup
tables are not conscious —or at least, that the conscious experiences generated during table
lookup are not the same as those generated during the operation of a system that might be de-
scribed (even in a simple-minded, computational sense) as accessing and generating beliefs,
introspections, goals, and so on. This would suggest that the brain prosthesis experiment
cannot use whole-brain-at-once replacement if it is to be effective in guiding intuitions, but it
does not mean that it must use one-atom-at-a-time replacement as Searle have us believe.

The Chinese room

Our final thought experiment is perhaps the most famous of all. It is due to John Searle (1980),
who describes a hypothetical system that is clearly running a program and passes the Turing
Test, but that equally clearly (according to Searle) does not understand anything of its inputs
and outputs. His conclusion is that running the appropnate program (i.e., having the right
outputs) is not a sufficient condition for being a mind.

The system consists of a human, who understands only English, equipped with a rule
book, written in English, and various stacks of paper, some blank, some with indecipherable
inscriptions. (The human therefore plays the role of the CPU, the rule book is the program,
and the stacks of paper are the storage device.) The system is inside a room with a small
opening to the outside. Through the opening appear slips of paper with indecipherable sym-
bols. The human finds matching symbols in the rule book, and follows the instructions. The
instructions may include writing symbols on new slips of paper, finding symbols in the stacks,
rearranging the stacks, and so on. Eventually, the instructions will cause one or more symbols
to be transcribed onto a piece of paper that is passed back to the outside world.

So far, so good. But from the outside, we see a system that is taking input in the form
of Chinese sentences and generating answers in Chinese that are as obviously "intelligent" as
those in the conversation imagined by Turing.” Searle then argues as follows: the person in
the room does not understand Chinese (given). The rule book and the stacks of paper, being

5 The fact that the stacks of paper might well be larger than the entire planet and the generation of answers
would take millions of years has no bearing on the logical structure of the argument. One aim of philosophical
training is to develop a finely honed sense of which objections are germane and which are not.
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just pieces of paper, do not understand Chinese. Therefore, there is no understanding of Chi-
nese going on. Hence, according to Searle, running the right program does not necessarily
generate understanding.

Like Turing, Searle considered and attempted to rebuff a number of replies to his argu-
ment. Several commentators, including John McCarthy and Robert Wilensky, proposed what
Searle calls the systems reply. The objection is that, although one can ask if the human in
the room understands Chinese, this is analogous to asking if the CPU can take cube roots.
In both cases, the answer is no, and in both cases, according to the systems reply, the entire
system does have the capacity in question. Certainly, if one asks the Chinese room whether it
understands Chinese, the answer would be affirmative (in fluent Chinese). By Turing's polite
convention, this should be enough. Searle's response is to reiterate the point that the under-
standing is not in the human and cannot be in the paper, so there cannot be any understanding.
He further suggests that one could imagine the human memorizing the rule book and the con-
tents of all the stacks of paper, so that there would be nothing to have understanding except
the human; and again, when one asks the human (in English), the reply will be in the negative.

Now we are down to the real issues. The shift from paper to memorization is a red
herring, because both forms are simply physical instantiations of a running program. The
real claim made by Searle rests upon the following {our axioms (Searle, 1990):

1. Computer programs are formal, syntactic entities.
2. Minds have mental contents, or semantics.

3. Syntax by itselfis not sufficient for semantics.

4. Brains cause minds.

From the first three axioms he concludes that programs are not sufficient for minds. In other
words, an agent running a program might be a mind, but it is not necessarily a mind just
by virtue of running the program. From the fourth axiom he concludes '"Any other system
capable of causing minds would have to have causal powers (at least) equivalent to those
of brains.” From there he infers that any artificial brain would have to duplicate the causal
powers of brains, not just run a particular program, and that human brains do not produce
mental phenomena solely by virtue of running a prograim.

The conclusions that programs are not sufficient for minds does follow from the axioms,
if you are generous in interpreting them. But the conclusion is unsatisfactory — all Searle has
shown is that if you explicitly deny functionalism (that is what his axiom (3) does) then you
can't necessarily conclude that non-brains are minds. This is reasonable enough, so the whole
argument comes down to whether axiom (3) can be accepted. According to Searle, the point
of the Chinese room argument is to provide intuitions for axiom (3). But the reaction to his
argument shows that it provides intuitions only to those who were already inclined to accept
the idea that mere programs cannot generate true understanding.

To reiterate, the aim of the Chinese Room argument is to refute strong Al—the claim
that running the right sort of program necessarily results in a mind. It does this by exhibiting
an apparently intelligent system running the right sort of program that is, according to Searle,
demonstrably not a mind. Searle appeals to intuition, not proof, for this part: just look at the
room; what's there to be a mind? But one could make the same argument about the brain:
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just look at this collection of cells (or of atoms), blindly operating according to the laws of
biochemistry (or of physics) —what's there to be a mind? Why can a hunk of brain be a mind
while a hunk of liver cannot?

Furthermore, when Searle admits that materials other than neurons could in principle
be a mind, he weakens his argument even further, for two reasons: first, one has only Searle’s
intuitions (or one's own) to say that the Chinese room is not a mind, and second, even if we
decide the room is not a mind, that tells us nothing about whether a program running on some
other physical medium (including a computer) might be a mind.

Searle allows the logical possibility that the brain is actually implementing an Al pro-
gram of the traditional sort—but the same program running on the wrong kind of machine
would not be a mind. Searle has denied that he believes that "machines cannot have minds,"
rather, he asserts that some machines do have minds —humans are biological machines with
minds. We are left without much guidance as to what types of machines do or do not qualify.

26.3 THE ETHICS AND RISKS OF DEVELOPING ARTIFICIAL INTELLIGENCE

So far, we have concentrated on whether we can develop Al but we must also consider
whether we should. If the effects of Al technology are more likely to be negative than posi-
tive, then it would be the moral responsibility of workers in the field to redirect their research.
Many new technologies have had unintended negative side-effects: the internal combustion
engine brought air pollution and the paving-over of paradise; nuclear fission brought Cher-
nobyl, Three Mile Island, and the threat of global destruction. All scientists and engineers
face ethical considerations of how they should act on the job, what projects should or should
not be done, and how they should be handled. There is even a handbook on the Ethics of
Computing (Berleur and Brunnstein, 2001). Al however, seems to pose some fresh problems
beyond that of, say, building bridges that don't fall down:

e People might lose their jobs to automation.

® Pcople might have too much (or too little) leisure time.

e People might lose their sense of being unique.

e People might lose some of their privacy rights.

® The use of Al systems might result in aloss of accountability.
e The success of ATl might mean the end of the human race.

We will look at each issue in turn.

People might lose their jobs to automation. The modem industrial economy has be-
come dependent on computers in general, and select Al programs in particular. For example,
much of the economy, especially in the United States, depends on the availability of con-
sumer credit. Credit card applications, charge approvals, and fraud detection are now done
by AT programs. One could say that thousands of workers have been displaced by these Al
programs, but in fact if you took away the Al programs these jobs would not exist, because
human labor would add an unacceptable cost to the transactions. So far, automation via AL
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technology has created more jobs than it has eliminated, and has created more interesting,
higher-paying jobs. Now that the canonical Al program is an "intelligent agent" designed
to assist a human, loss of jobs is less of a concern than it was when Al focused on "expert
systems" designed to replace humans.

People might have too much (or too little) leisure time. Alvin Toffler wrote in Future
Shock (1970), " The work week has been cut by 50 percent since the turn of the century. It
is not out of the way to predict that it will be slashed in half again by 2000.” Arthur C.
Clarke (1968b) wrote that people in 2001 might be "faced with a future of utter boredom,
where the main problem in life is deciding which of several hundred TV channels to se-
lect." The only one of these predictions that has come close to panning out is the number of
TV channels (Springsteen, 1992). Instead, people working in knowledge-intensive industries
have found themselves part of an integrated computerized system that operates 24 hours a
day; to keep up, they have been forced to work Jonger hours. In an industrial economy, re-
wards are roughly proportional to the time invested; working 10% more would tend to mean
a 10% increase in income. In an information economy marked by high-bandwidth commu-
nication and easy replication of intellectual property (what Frank and Cook (1996) call the
"Winner-Take-All Society™), there is a large reward for being slightly better than the com-
petition; working 10% more could mean a 100% increase in income. So there is increasing
pressure on everyone to work harder. Al increases the pace of technological innovation and
thus contributes to this overall trend, but Al also holds the promise of allowing us to take
some time off and let our automated agents handle things for a while.

People might lose their sense of being unique. In Computer Power and Human Reason,
Weizenbaum (1976}, the author of the ELIZA program, points out some of the potential threats
that Al poses to society. One of Weizenbaum's principal arguments is that Al research makes
possible the idea that humans are automata—an idea that results in a Ross of autonomy or even
of humanity. We note that the idea has been around much longer than Al, going back at least
to L’Homme Machine (La Mettrie, 1748). We also note that humanity has survived other
setbacks to our sense of uniqueness: De Revolutionibus Orbium Coelestium (Copernicus,
1543) moved the Earth away from the center of the solar system and Descent d Man (Darwin,
1871) put Homo sapiens at the same level as other species. Al if widely successful, may be
at least as threatening to the moral assumptions of 21st-century society as Darwin's theory of
evolution was to those of the 19th century.

People might lose some of their privacy rights. Weizenbaum also pointed out that
speech recognition technology could lead to widespread wiretapping, and hence to a loss of
civil liberties. He didn't foresee a world with terrorist threats that would change the balance
of how much surveillance people are willing to accept, but he did correctly recognize that Al
has the potential to mass-produce surveillance. His prediction may have come true: the U.S.
government's classified Echelon system "consists of a network of listening posts, antenna
fields, and radar stations; the system is backed by computers that use language translation,
speech recognition, and keyword searching to automatically sift through telephone, email,
fax, and telex traffic.”® Some accept that computerization leads to a loss of privacy —Sun

8 See "Eavesdroppingon Europe," Wired news, 913011998, and cited EU reports.
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Microsystems CEO Scott McNealy has said "You have zero privacy anyway. Get over it."
Others disagree: Judge Louis Brandeis wrote in 1890, " Privacy is the most comprehensive of
all rights . .. the right to one's personality."

The use of Al systems might resultin a loss of accountability. In the litigious atmosphere
that prevails in the United States, legal liability becomes an important issue. When a physi-
cian relies on the judgment of a medical expert system for a diagnosis, who is at fault if the
diagnosis is wrong? Fortunately, due in part to the growing influence of decision-theoretic
methods in medicine, it is now accepted that negligence cannot be shown if the physician
performs medical procedures that have high expected utility, even if the actual result is catas-
trophic for the patient. The question should therefore be "Who is at fault if the diagnosis is
unreasonable?" So far, courts have held that medical expert systems play the same role as
medical textbooks and reference books; physicians are responsible for understanding the rea-
soning behind any decision and for using their own judgment in deciding whether to accept
the system's recommendations. In designing medical expert systems as agents, therefore,
the actions should be thought of not as directly affecting the patient but as influencing the
physician's behavior. If expert systems become reliably more accurate than human diagnosti-
cians, doctors might become legally liable if they don't use the recommendations of an expert
system. Gawande (2002) explores this premise.

Similar issues are beginning to arise regarding the use of intelligent agents on the Inter-
net. Some progress has been made in incorporating constraints into intelligent agents so that
they cannot, for example, damage the files of other users (Weld and Etzioni, 1994). The prob-
lem 1s magnified when money changes hands. If monetary transactions are made “on one's
behalf™ by an intelligent agent, is one liable for the debts incurred? Would it be possible for
an intelligent agent to have assets itself and to perform electronic trades on its own behalf?
So far, these questions do not seem to be well understood. To our knowledge, no program
has been granted legal status as an individual for the purposes of financial transactions; at
present, it seems unreasonable to do so. Programs are also not considered to be "drivers"
for the purposes of enforcing traffic regulations on real highways. In California law, at least,
there do not seem to be any legal sanctions to prevent an automated vehicle from exceeding
the speed limits, although the designer of the vehicle's control mechanism would be liable in
the case of an accident. As with human reproductive technology, the law has yet to catch up
with the new developments.

The success of AI might mean the end of the human race. Almost any technology has
the potential to cause harm in the wrong hands, but with Al and robotics, we have the new
problem that the wrong hands might belong to the technology itself. Countless science fiction
stories have warned about robots or robot—human cyborgs running amok. Early examples
include Mary Shelley's Frankenstein, or the Modern Prometheus (1818)" and Karel Capek's
play R.UR (1921), in which robots conquer the world. In movies, we have The Terminator
(1984), which combines the cliches of robots-conquer-the-world with time travel, and The
Matrix (1999), which combines robots-conquer-the-world with brain-in-a-vat.

7 As a young man, Charles Babbage was influenced by reading Frankenstein.
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TECHNOLOGICAL
SINGULARITY

TRANSHUMANISM

For the most past, it seems that robots are the protagonists of so many conquer-the-
warld stories because they represent the unknown, just like the witches and ghosts of tales
from earlier eras. Do they pose a more credible threat than witches and ghosts? If robots are
properly designed as agents that adopt their owner's goals, then they probably do not: robots
that derive from incremental advances over current designs will serve, not conquer. Humans
use their intelligence in aggressive ways because humans have some innately aggressive ten-
dencies, due to natural selection. But the machines we build need not be innately aggressive,
unless we decide to build them that way. On the other hand, itis possible that computers will
achieve a sort of conquest by serving and becoming irtdispensable, just as automobiles have

in a sense conquered the industrialized world. One scenario deserves further consideration.
1. J. Good wrote (1963),

Let an ultraintelligent machine be defined as a machine that can far surpass all the in-
tellectual activities of any man however clever. Since the design of machines is one of
these intellectual activities, an ultraintelligent machine could design even better machines;
there would then unquestionably be an "intelligence explosion," and the intelligence of
man would be left far behind. Thus the first ultraintelligent machine is the /ast invention

that man need ever make, provided that the machine is docile enough to tell us how to
keep it under control.

The "intelligence explosion" has also been called the technological singularity by mathe-
matics professor and science fiction author Vernor Vinge, who writes (1993), " Within thirty
years, we will have the technological means to create superhuman intelligence. Shortly after,
the human era will be ended." Good and Vinge (and many others) correctly note that the
curve of technological progress is growing exponentially at present (consider Moore's Law).
However, it is quite a step to extrapolate that the curve will continue on to a singularity of
near-infinite growth. So far, every other technology has followed an S-shaped curve, where
the exponential growth eventually tapers off.

Vinge is concerned and scared about the coming singularity, but other computer sci-
entists and futurists relish it. Hans Moravec's Robot: Mere Machine to Transcendent Mind
predicts that robots will match human intelligence in 50 years and then exceed it. He writes,

Rather quickly, they could displace us from existence. I'm not as alarmed as many by
the latter possibility, since I consider these future machines our progeny, ""mind children"
built in our image and likeness, ourselves in more potent form. Like biological children
of previous generations, they will embody humanity's best hope for a long-term future.

It behooves us to give them every advantage, and to bow out when we can no longer
contribute. (Moravec, 2000)

Ray Kurzwell, in The Age & Spiritual Machines (2000), predicts that by the year 2099 there
will be "a strong trend toward a merger of human thinking with the world of machine in-
telligence that the human species initially created. There is no longer any clear distinction
between humans and computers.”" There is even a new word—-transhumanism — for the ac-
tive social movement that looks forward to this future. Sufficeit to say that such issues present
a challenge for most moral theorists, who take the preservation of human life and the human
species to be a good thing.
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Finally, let us consider the robot's point of view. If robots become conscious, then to
treat them as mere "machines" (e.g., to take them apart) might be immoral. Robots also must
themselves act morally —we would need to program them with a theory of what is right and
wrong. Science fiction writers have addressed the issue of robot rights and responsibilities,
starting with Isaac Asimov (1942). The well-known movie A.I. (Spielberg, 2001) was based
on a story by Brian Aldiss about an intelligent robot who was programmed to believe that
he was human and fails to understand his eventual abandonment by his owner—mother. The
story (and the movie) convince one of the need for a civil rights movement for robots.

26.4 SUMMARY

This chapter has addressed the following issues:

o Philosophers use the term weak Al for the hypothesis that machines could possibly
behave intelligently, and strong Al for the hypothesis that such machines would count
as having actual minds (as opposed to simulated minds).

o Alan Turing rejected the question "Can machines think?” and replaced it with a behav-
ioral test. He anticipated many objections to to the possibility of thinking machines.
Few Al researchers pay attention to the Turing test, preferring to concentrate on their
systems' performance on practical tasks, rather than the ability to imitate humans.

® There is general agreement in modern times that mental states are brain states.

e Arguments for and against strong Al are inconclusive. Few mainstream Al researchers
believe that anything significant hinges on the outcome of the debate.

e Consciousness remains a mystery.

e We identified six potential threats to society posed by Al and related technology. We
concluded that some of the threats are either unlikely or differ little from threats posed
by other, "unintelligent" technologies. One threat in particular 1s worthy of further
consideration: that ultraintelligent machines might lead to a future that is very different
from today—we may not like it, and at that point we may not have a choice. Such
considerations lead inevitably to the conclusion that we must weigh carefully, and soon,
the possible consequences of Al research for the future of the human race.

.
BIBLIOGRAPHICAL AND HISTORICAL NOTES

The nature of the mind has been a standard topic of philosophical theorizing from ancient
times to the present. In the Phaedo, Plato specifically considered and rejected the idea that
the mind could be an "attunement" or pattern of organization of the parts of the body, a
viewpoint that approximates the functionalist viewpoint in modern philosophy of mind. He
decided instead that the mind had to be an immortal, immatenial soul, separable from the
body and different in substance —the viewpoint of dualism. Aristotle distinguished a variety
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of souls (Greek v xn) in living things, some of which, at least, he described in a functionalist
manner. (See Nussbaum (1978) for more on Aristotle's functionalism.)

Descartes is notorious for his dualistic view of the human mind, but ironically his his-
torical influence was toward mechanism and matenialism. He explicitly conceived of animals
as automata, and he anticipated the Turing test, writing "it is not conceivable [that a machine]
should produce different arrangements of words so as to give an appropriately meaningful
answer to whatever is said in its presence, as even the dullest of men can do" (Descartes,
1637). Descartes's spirited defense of the animals-as-automata viewpoint actually had the
effect of making it easier to conceive of humans as automata as well, even though he himself
did not take this step. The book L 'Ifomme Machine or Man a Machine (La Mettrie, 1748) did
explicitly argue that humans are automata.

Modem analytic philosophy has typically accepted materialism (often in the form of
the brain-state identity theory (Place, 1956; Armstrong, 1968), which asserts that mental
states are identical with brain states), but has been much more divided on functionalism, the
machine analogy for the human mind, and the question of whether machines can literally
think. A number of early philosophical responses to Turing's (1950) " Computing Machinery
and Intelligence, " for example, Scriven (1953), attempted to deny that it was even meaningful
to say that machines could think, on the ground that such an assertion violated the meaning
of the word. Scriven, at least, had retracted this view by 1963; see his addendum to a reprint
of his article (Anderson, 1964). The computer scientist Edsger Dijkstra said that "The ques-
tion of whether a computer can think is no more interesting than the question of whether a
submarine can swim." Ford and Hayes (1995) argue that the Turing Test is not helpful for Al

Functionalism is the philosophy of mind most nalurally suggested by Al, and critiques
of functionalism often take the form of critiques of Al (as in the case of Searle). Following
the classification used by Block (1980), we can distinguish varieties of functionalism. Func-
tional specification theory (Lewis, 1966, 1980) is a variant of brain-state identity theory that
selects the brain states that are to be identified with mental states on the basis of their func-
tional role. Functional state identity theory (Putnam, 1961, 1967) is more closely based
on a machine analogy. It identifies mental states not with pAysical brain states but with ab-
stract computational states of the brain conceived expressly as a computing device. These
abstract states are supposed to be independent of the specific physical composition of the
brain, leading some to charge that functional state identity theory is a form of dualism!

Both the brain-state identity theory and the various forms of functionalism have come
under attack from authors who claim that they do not account for the qualia or "what it's like"
aspect of mental states (Nagel, 1974). Searle has focused instead on the alleged inability
of functionalism to account for intentionality (Searle, 1980, 1984, 1992). Churchland and
Churchland (1982) rebut both these types of criticism.

AT e Eliminative materialism(Rorty, 1965; Churchlancl, 1979) differs from all other promi-
nent theories in the philosophy of mind, in that it does not attempt to give an account of why
our "folk psychology' or commonsense ideas about the mind are true, but instead rejects
them as false and attempts to replace them with a purely scientific theory of the mind. In
principle, this scientific theory could be given by classical AI, but in practice, eliminative
matcrialists tend to lean on neuroscience and neural network research instead (Churchland,
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1986), on the grounds that classical Al, especially "knowledge representation” research of
the kind described in Chapter 10, tends to rely on the truth of folk psychology. Although the
"intentional stance" viewpoint (Dennett, 1971) could be interpreted as functionalist, it should
probably instead be regarded as a form of eliminative materialism, in that taking the "inten-
tional stance" is not supposed to reflect any objective property of the agent toward whom
the stance is taken. It should also be noted that it is possible to be an eliminative materialist
about some aspects of mentality while analyzing others in some other way. For instance,
Dennett (1978) is much more strongly eliminativist about qualia than about intentionality.

Sources for the main critics of weak Al were given in the chapter. Although it became
fashionable in the post-neural-network era to deride symbolic approaches, not all philoso-
phers are critical of GOFAIL. Some are, in fact, ardent advocates and even practitioners. Zenon
Pylyshyn (1984) has argued that cognition can best be understood through a computational
model, not only in principle but also as a way of conducting research at present, and has
specifically rebutted Dreyfus's criticisms of the computational model of human cognition
(Pylyshyn, 1974). Gilbert Harman (1983), in analyzing belief revision, makes connections
with Al research on truth maintenance systems. Michael Bratman has applied his “belict-
desire-intention" model of human psychology (Bratman, 1987) to Al research on planning
(Bratman, 1992). At the extreme end of strong Al Aaron Sloman (1978, p. xiii) has even
described as "racialist" Joseph Weizenbaum's view (Weizenbaum, 1976) that hypothetical
intelligent machines should not be regarded as persons.

The philosophical literature on minds, brains, and related topics is large and sometimes
difficult to read without proper training in the terminology and methods of argument em-
ployed. The Encyclopedia of Philosophy (Edwards, 1967) is an impressively authoritative
and very useful aide in this process. The Cambridge Dictionary of Philosophy (Audi, 1999)
is a shorter and more accessible work, but main entries (such as "philosophy of mind) still
span 10 pages or more. The MIT Encyclopedia of Cognitive Science (Wilson and Keil, 1999)
covers the philosophy of mind as well as the biology and psychology of mind. General collec-
tions of articles on philosophy of mind, including functionalism and other viewpoints related
to Al, are Materialism and the Mind-Body Problem (Rosenthal, 1971) and Readings in the
Philosophy of Psychology, volume 1 (Block, 1980). Biro and Shahan (1982) present a col-
lection devoted to the pros and cons of functionalism. Anthologies of articles dealing more
specifically with the relation between philosophy and Al include Minds and Machines (An-
derson, 1964), Philosophical Perspectives in Artificial Intelligence (Ringle, 1979), Mind De-
sign (Haugeland, 1981), and The Philosophy of Artificial Intelligence (Boden, 1990). There
are several general introductions to the philosophical “Al question" (Boden, 1977, 1990;
Haugeland, 1985; Copeland, 1993). The Behavioral and Brain Sciences, abbreviated BBS,
is a major journal devoted to philosophical and scientific debates about Al and neuroscience.
Topics of ethics and responsibility in Al are covered in journals such as Al and Society, Law,
Computers and Artificial Intelligence, and Artijicial Intelligence and Law.
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EXERCISES

26.1 Go through Turing's list of alleged " disabilities" of machines, identifying which have
been achieved, which are achievable in principle by a program, and which are still problem-
atic because they require conscious mental states.

26.2 Does a refutation of the Chinese room argument necessarly prove that appropriately
programmed computers have mental states? Does an acceptance of the argument necessarily
mean that computers cannot have mental states?

26.3 In the brain prosthesis argument, it is important to be able to restore the subject's
brain to normal, such that its external behavior is as it would have been if the operation had
not taken place. Can the skeptic reasonably object that this would require updating those
neurophysiological properties of the neurons relating to conscious experience, as distinct
from those involved in the functional behavior of the neurons?

26.4 Find and analyze an account in the popular media of one or more of the arguments to
the effect that AT 1s impossible.

26.5 Attempt to write definitions of the terms "intelligence," "thinking," and "conscious-
ness." Suggest some possible objections to your definitions.

26.6 Analyze the potential threats from Al technology to society. What threats are most se-
rious, and how might they be combated? How do they compare to the potential benefits?

26.7 How do the potential threats from Al technology compare with those from other com-
puter science technologies, and to bio-, nano-, and nuclear technologies?

26.8 Some critics object that Al is impossible, while others object that it is too possible,
and that ultraintelligent machines pose a threat. Which of these objections do you think is
more likely? Would it be a contradiction for someone to hold both positions?






Al: PRESENT AND
FUTURE

Inwhichwe take stock of where we are and where we are going, this being a good
thing to do before continuing.

In Part I, we proposed a unified view of Al as rational agent design. We showed that
the design problem depends on the percepts and actions available to the agent, the goals that
the agent's behavior should satisfy, and the nature of the environment. A variety of differ-
ent agent designs are possible, ranging from reflex agents to fully deliberative, knowledge-
based agents. Moreover, the components of these designs can have a number of different
instantiations— forexample, logical, probabilistic, or "'neural."” The intervening chapters pre-
sented the principles by which these components opcrate.

For all the agent designs and components, there has been tremendous progress bothin
our scientific understanding and in our technological capabilities. In this chapter, we stand
back from the details and ask, "“"Will all this progress lead to a general-purpose intelligent
agent that can perform well in a wide variety of environments? Section 27.1 looks at the
components of an intelligent agent to assess what's known and what's missing. Section 27.2
does the same for the overall agent architecture. Section 27.3 asks whether ''rational agent
design''is the right goal in the first place. (The answer is, ""Not really, but it's OK for now.")
Finally, Section 27 4 examines the consequences of success in our endeavors.

27.1 AGENT COMPONENTS

Chapter 2 presented several agent designs and their components. To focus our discussion
here, we will look at the utility-based agent, which we show again in Figure 27.1. This
is the most general of our agent designs; we will also consider its extension with learning
capabilities, as depicted in Figure 2.15.

Interaction with the environment through sensors and actuators: For much of the his-
tory of Al, this has been a glaring weak point. With a few honorable exceptions, Al systems
were built in such a way that humans had to supply the inputs and interpret the outputs, while
robotic systems focused on low-level tasks in which high-level reasoning and planning were
largely absent. This was due in part to the great expense and engineering effort required
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Figure27.1 A model-based, utility-based agent, as first presented in Figure 2.14.

to get real robots to work at all. The situation has changed rapidly in recent years with the
availability of ready-made programmable robots, such as the four-legged robots showninFig-
ure 25.4(b). These, in turn, have benefited from small, cheap, high-resolution CCD cameras
and compact, reliable motor drives. MEM S (micro-electromechanical systems) technology
has supplied miniaturized accelerometers and gyroscopes and is now producing actuators
that will, for example, power an artificial flying insect. (It may also be possible to combine
millions of MEM S actuators to produce very powerful macroscopic actuators.) For physical
environments, then, Al systems no longer have a real excuse. Furthermore, an entirely new
environment —the Internet —has become available.

Keeping track d the state & the world: This is one of the core capabilities required
for an intelligent agent. It requires both perception and updating of internal representations.
Chapter 7 described methods for keeping track of worlds described by propositional logic;
Chapter 10 extended this to first-order logic; and Chapter 15 described filtering algorithms
for tracking uncertain environments. These filtering tools are: required when real (and there-
fore imperfect) perception is involved. Current filtering and perception algorithms can be
combined to do a reasonable job of reporting low-level predicates such as "the cup is on the
table" but we have some way to go before they can report that 'Dr. Russell is having a cup
of tea with Dr. Norvig." Another problem is that, although approximate filtering algorithms
can handle quite large environments, they are still essentially propositional — like proposi-
tional logic, they do not represent objects and relations explicitly. Chapter 14 explained how
probability and first-order logic can be combined to solve this problem; we expect that the
application of these ideas for tracking complex environments will yield huge benefits. Inci-
dentally, as soon as we start talking about objects in an uncertain environment, we encounter
identity uncertainty — we don't know which object is which. This problem has been largely
ignored in logic-based AI, where it has generally been assumed that percepts incorporate
constant symbols that identify the objects.
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Projecting, evaluating, and selecting future courses of action: The basic knowledge
representation requirements here are the same as for keeping track of the world; the primary
difficulty is coping with courses of action—such as having a conversation or a cup of tea—
that consist eventually of thousands or millions of primitive steps for a real agent. It is only
by imposing hierarchical structure on behavior that we humans cope at all. Some of the
planning algorithms in Chapter 12 use hierarchical representations and first-order representa-
tions to handle problems of this scale; on the other hand, the algorithms given in Chapter 17
for decision making under uncertainty are essentially using the same ideas as the state-based
search algorithms of Chapter 3. There is clearly a great deal of work to do here, perhaps
along the lines of recent developments in hierarchical reinforcement learning.

Utility as an expression of preferences: In principle, basing rational decisions on the
maximization of expected utility is completely general and avoids many of the problems of
purely goal-based approaches, such as conflicting goals and uncertain attainment. As yet,
however, there has been very little work on constructing realistic utility functions —imagine,
for example, the complex web of interacting preferences that must be understood by an agent
operating as an office assistant for a human being. It has proven very difficult to decompose
preferences over complex states in the same way that Bayes nets decompose beliefs over
complex states. One reason may be that preferences over states are really compiled from
preferences over state histories, which are described by reward functions (see Chapter 17).
Evenif the reward function 1s simple, the corresponding utility function may be very complex.
This suggests that we take seriously the task of knowledge engineering for reward functions
as a way of conveying to our agents what it is that we want them to do.

Learning: Chapters 18 to 20 described how learning in an agent can be formulated
as inductive learning (supervised, unsupervised, or reinforcement-based) of the functions
that constitute the various components of the agent. Very powerful logical and statistical
techniques have been developed that can cope with quite large problems, often reaching or
exceeding human capabilities in the identification of predictive patterns defined on a given
vocabulary. On the other hand, machine learning has made very little progress on the im-
portant problem of constructing new representations at levels of abstraction higher than the
input vocabulary. For example, how can an autonomous robot generate useful predicates such
as Office and Cafe if they are not supplied to it by humans? Similar considerations apply
to learning behavior —HavingACupOfTea is an important high-level action, but how does
it get into an action library that initially contains much simpler actions such as RaiseArm
and Swallow? Unless we understand such issues, we are faced with the daunting task of
constructing large commonsense knowledge bases by hand.

27.2 AGENT ARCHITECTURES

It is natural to ask, "Which of the agent architectures in Chapter 2 should an agent use?"
The answer is, "All of them!" We have seen that reflex responses are needed for situations
in which time is of the essence, whereas knowledge-based deliberation allows the agent to
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Plan ahead. A complete agent must be able to do both, using a hybrid architecture. One
important property of hybrid architectures is that the boundaries between different decision
components are not fixed. For example, compilation continually converts declarative in-
formation at the deliberative level into more efficient representations, eventually reaching the
reflex level —see Figure 27.2. (Thisis the purpose of explanation-based leaming, as discussed
in Chapter 19.) Agent architectures such as SOAR (Laird et al., 1987) and THEO (Mitchell,
1990) have exactly this structure. Every time they solve a problem by explicit deliberation,
they save away a generalized version of the solution for use by the reflex component. A
less studied problem is the reversal of this process: when the environment changes, learned
reflexes may no longer be appropriate and the agent must return to the deliberative level to
produce new behaviors.

Knowledge-based
deliberation

uonppdwo?)

—— — — — ]

‘ Percepts Reflex system | Actions

Figure 27.2  Compilation serves to convert deliberative decision making into more effi-
cient, reflexive mechanisms.
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Agents also need ways to control their own deliberations. They must be able to cease
deliberating when action is demanded, and they must be able to use the time available for
deliberation to execute the most profitable computations. For example, a taxi-driving agent
that sees an accident ahead must decide in a split second either to brake or to take evasive
action. It should also spend that split second thinking about the most important questions,
such as whether the lanes to the left and right are clear and whether there is a large truck
close behind, rather than worrying about wear and tear on the tires or where to pick up the
next passenger. These issues are usually studied under the heading of real-time Al. As Al
systems move into more complex domains, all problems will become real-time, because the
agent will never have long enough to solve the decision problem exactly.

Clearly, there is a pressing need for methods that work in more general decision-making
situations. Two promising techniques have emerged in recent years. The first involves the use
of anytime algorithms (Dean and Boddy, 1988; Horvitz, 1'987). An anytime algorithm is
an algorithm whose output quality improves gradually over time, so that it has a reasonable
decision ready wheneveritis interrupted. Such algorithms are controlled by a metalevel deci-
sion procedure that assesses whether further computation is worthwhile. Iterative deepening
search in game playing provides a simple example of an anytime algorithm. More complex
systems, composed of many such algorithms working together, can also be constructed (Zil-
berstein and Russell, 1996). The second technique is decision-theoretic metareasoning
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(Horvitz, 1989; Russell and Wefald, 1991; Horvitz and Breese, 1996). This method applies
the theory of information value (Chapter 16) to the selection of computations. The value of a
computation depends on both its cost (in terms of delaying action) and its benefits (in terms
of improved decision quality). Metareasoning techniques can be used to design better search
algorithms and to guarantee that the algorithms have the anytime property. Metareasoning is
expensive, of course, and compilation methods can be applied so that the overhead is small
compared to the costs of the computations being controlled.

R TV e Metareasoning is but one aspect of a general reflective architecture —that is, an archi-
tecture that enables deliberation about the computational entities and actions occurring within
the architecture itself. A theoretical foundation for reflective architectures can be built by
defining a joint state space composed from the environment state and the computational state
of the agent itself. Decision-making and learning algorithms can be designed that operate
over this joint state space and thereby serve to implement and improve the agent's compu-
tational activities. Eventually, we expect task-specific algorithms such as alpha-beta search
and backward chaining to disappear from Al systems, to be replaced by general methods that
direct the agent's computations toward the efficient generation of high-quality decisions.

27.3 ARE WE GOING IN THE RIGHT DIRECTION?

The preceding section listed many advances and many opportunities for further progress. But
where is this all leading? Dreyfus (1992) gives the analogy of trying to get to the moon by
climbing a tree; one can report steady progress, all the way to the top of the tree. In this
section, we consider whether AI's current path is more like a tree climb or a rocket trip.

In Chapter 1, we said that our goal was to build agents that act rationally. However, we
also said that

... achieving perfect rationality — alwaysdoing the right thing—is not feasible in compli-
cated environments. The computational demands are just too high. For most of the book,
however, we will adopt the working hypothesis that perfect rationality is a good starting
point for analysis.

Now it is time to consider again what exactly the goal of Alis. We want to build agents, but

with what specification in mind? Here are four possibilities:

Perfect rationality. A perfectly rational agent acts at every instant in such a way as to
maximize its expected utility, given the information it has acquired from the environment. We
have seen that the calculations necessary to achieve perfect rationality in most environments
are too time-consuming, so perfect rationality is not a realistic goal.

CALOULATIVE Calculative rationality. This is the notion of rationality that we have used implicitly
in designing logical and decision-theoretic agents. A calculatively rational agent eventually
returns what would have been the rational choice at the beginning of its deliberation. This is
an interesting property for a system to exhibit, but in most environments, the right answer at
the wrong time is of no value. In practice, Al system designers are forced to compromise on
decision quality to obtain reasonable overall performance; unfortunately, the theoretical basis

PERFECT
RATIONAUTY
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of calculative rationality does not provide a well-founded way to make such compromises.

Bounded rationality. Herbert Simon (1957) rejected the notion of perfect (or even ap-
proximately perfect) rationality and replaced it with bounded rationality, a descriptive theory
of decision making by real agents. He wrote,

The capacity of the human mind for formulating and solving complex problems is very
small compared with the size of the problems whose solution is required for objectively
rational behavior in the real wardd—or even for a reasonable approximation to such ob-
Jjective rationality.

He suggested that bounded rationality works primarily by satisficing — that 1s, deliberating
only long enough to come up with an answer that is "good enough." Simon won the Nobel
prize in economics for this work and has written about it in depth (Simon, 1982). It appears
to be a useful model of human behaviors in many cases. It is not a formal specification
for intelligent agents, however, because the definition of "good enough" is not given by the
theory. Furthermore, satisficing seems to be just one of a large range of methods used to cope
with bounded resources.

Bounded optimality (BO). A bounded optimal agent behaves as well as possible, given
its computational resources. That 1s, the expected utility of the agent program for a bounded
optimal agent is at least as high as the expected utility of any other agent program running on
the same machine.

Of these four possibilities, bounded optimality seems to offer the best hope for a strong
theoretical foundation for Al It has the advantage of being possible to achieve: thereis always
at least one best program — something that perfect rationality lacks. Bounded optimal agents
are actually useful in the real world, whereas calculatively rational agents usually are not, and
satisficing agents might or might not be, depending on their own whims.

The traditional approach in AI has been to start with calculative rationality and then
make compromises to meet resource constraints. If the problems imposed by the constraints
are minor, one would expect the final design to be similar to a BO agent design. But as the re-
source constraints become more critical—e.g., as the environment becomes more complex—
one would expect the two designs to diverge. In the theory of bounded optimality, these
constraints can be handled in a principled fashion.

As yet, little is known about bounded optimality. It is possible to construct bounded
optimal programs for very simple machines and for somewhat restricted kinds of environ-
ments (Etzioni, 1989; Russell ez al., 1993), but as yet we have no idea what BO programs
are like for large, general-purpose computers in complex environments. If there is to be a
constructive theory of bounded optimality, we have to hope that the design of bounded op-
timal programs does not depend too strongly on the details of the computer being used. It
would make scientific research very difficultif adding a few kilobytes of memory to a giga-
byte machine made a significant difference to the design of the BO program. One way to
make sure this cannot happen is to be slightly more relaxed about the criteria for bounded
optimality. By analogy with the notion of asymptotic complexity (Appendix A), we can de-
fine asymptotic bounded optimality (ABO) as follows (Russell and Subramanian, 1995).
Suppose a program P is bounded optimal for a machine M in a class of environments E,
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where the complexity of environments in E is unbounded. Then program P' is ABO for M
in E if it can outperform P by running on a machine £3{ that is £ times faster (or larger)
than M. Unless & were enormous, we would be happy with a program that was ABO for
a nontrivial environment on a nontrivial architecture. There would be little point in putting
enormous effort into finding BO rather than ABO programs, because the size and speed of
available machines tends to increase by a constant factor in a fixed amount of time anyway.

We can hazard a guess that BO or ABO programs for powerful computers in complex
environments will not necessarily have a simple, elegant structure. We have already seen that
general-purposeintelligence requires some reflex capability and some deliberative capability,
a variety of forms of knowledge and decision making, learning and compilation mechanisms
for all of those forms, methods for controlling reasoning, and a large store of domain-specific
knowledge. A bounded optimal agent must adapt to the environment in which it finds itself,
so that eventually its internal organization will reflect optimizations that are specific to the
particular environment. This is only to be expected, and it is similar to the way in which
racing cars restricted by engine capacity have evolved into extremely complex designs. We
suspect that a science of artificial intelligence based on bounded optimality will involve a
good deal of study of the processes that allow an agent program to converge to bounded
optimality and perhaps less concentration on the details of the messy programs that result.

In sum, the concept of bounded optimality is proposed as a formal task for Al research
that is both well defined and feasible. Bounded optimality specifies optimal programs rather
than optimal actions. Actions are, after all, generated by programs, and it is over programs
that designers have control.

27.4 WHATIF AL DOES SUCCEED?

In David Lodge's Small World (1984), a novel about the academic world of literary criticism,
the protagonist causes consternation by asking a panel of eminent but contradictory literary
theorists the following question: "What if you were right?” None of the theorists seems to
have considered this question before, perhaps because debating unfalsifiable theories 1s an
end in itself. Similar confusion can sometimes be evoked by asking Al researchers, "What
if you succeed?” Al is fascinating, and intelligent computers are clearly more useful than
unintelligent computers, so why worry?

As Section 26.3 relates, there are ethical issues to consider. Intelligent computers are
more powerful, but will that power be used for good or ill? Those who strive to develop
Al have a responsibility to see that the impact of their work is a positive one. The scope of
the impact will depend on the degree of success of Al. Even modest successes in Al have
already changed the ways in which computer science is taught (Stein, 2002) and software
development is practiced. Al has made possible new applications such as speech recognition
systems, inventory control systems, surveillance systems, robots, and search engines.

We can expect that medium-level successes in Al would affect all kinds of people in
their daily lives. So far, computerized communication networks, such as cell phones and the
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Internet, have had this kind of pervasive effect on society, but Al has not. We can imagine that
truly useful personal assistants for the office or the home would have a large positive impact
on people's lives, although they might cause some economic dislocation in the short term. A
technological capability at this level might also be applied to the development of autonomous
weapons, which many view as an undesirable development.

Finally, it seems likely that a large-scale success in Al—-the creation of human-level in-
telligence and beyond —would change the lives of a majority of humankind. The very nature
of our work and play would be altered, as would our view of intelligence, consciousness, and
the future destiny of the human race. At this level, Al systems could pose a more direct threat
to human autonomy, freedom, and even survival. For these reasons, we cannot divorce Al
research from its ethical consequences.

Which way will the future go? Science fiction authors seem to favor dystopian futures
over utopian ones, probably because they make for more interesting plots. But so far, Al
seems to fitin with other revolutionary technologies (printing, plumbing, air travel, telephony)
whose negative repercussions are outweighed by their positive aspects.

In conclusion, we see that Al has made great progress in its short history, but the final
sentence of Alan Turing's essay on Computing Machinery and Intelligenceis still valid today:

We can see only a short distance ahead, but we can see that much remains to be done.
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